Inhibition of Sporulation of *Clostridium thermosaccharolyticum*

MICHAEL F. CAMPBELL AND Z. JOHN ORDAL

Department of Food Science, University of Illinois, Urbana 61801

Received for publication 3 October 1968

Studies were undertaken to determine the effect of chemical inhibitors on the sporulation of thermophilic anaerobes of which *Clostridium thermosaccharolyticum* is a representative organism. Since fluoroacetic acid (R. S. Hanson, Ph.D. Thesis, Univ. of Illinois, Urbana, 1962), diethyl malonate (6), and α-picolinic acid (pyridine-6-carboxylic acid; reference 3) have been found to inhibit the sporulation of various species of bacilli, it was decided to use these inhibitors plus malonic acid in the preliminary stages of this investigation.

C. thermosaccharolyticum, National Canners Association strain 3814, was grown in either 0.5% L-arabinose medium to obtain sporulating cultures or in 0.5% glucose medium to obtain vegetative cultures by the procedure of Pheil and Ordal (8). Various levels of each inhibitor were added to the media at time of inoculation (except fluoroacetic acid, which was added 2 hr after inoculation) of the cultures in order to determine the concentration of inhibitor required to obtain complete inhibition of sporulation without inhibiting vegetative growth. It was found that 5 mM levels of fluoroacetic acid (FAA) and α-picolinic acid and 40 mM levels of malonate and diethyl malonate were required for the complete inhibition of the sporulation of this organism in L-arabinose medium. However, at the levels of inhibitors required to obtain complete inhibition of sporulation, FAA was found to be the only inhibitor which did not adversely affect the growth rates or pH changes of vegetative cultures grown in glucose medium. For this reason, FAA (5 mM) was used in further experiments on the overall effects of the inhibitor on the metabolism of vegetative and sporulating cells.

FAA (7), diethyl malonate (11), and α-picolinic acid (P. Fortnagel and E. Freese, Bacteriol. Proc., p. 117, 1968) have been found to inhibit acetate utilization and the tricarboxylic acid (TCA) cycle in sporulating bacilli and other biological systems. FAA and α-picolinic acid have been found to inhibit the TCA cycle in the aconitase enzyme, and the site of action of the malonate inhibitor was the succinate dehydrogenase enzyme complex. Therefore, part of this study was directed to finding evidence for or against the operation of the TCA cycle during sporulation of *C. thermosaccharolyticum*.

The end products found in supernatant fluids of vegetative and sporulating cultures grown in the presence of 14C-labeled substrates were determined by silica gel column chromatography (9). Various specifically labeled 14C-glucose compounds (14C in carbons 1, 2, 3-4, or 6) were used as the tracers in these experiments. The labeled compounds were added to glucose-grown cultures 1 hr after inoculation of the cultures. In the L-arabinose-grown cultures, the labeled compounds were added 12 hr after culture inoculation, to determine the end products formed during the period of altered metabolic activity of sporulation. The labeled end products recovered were butyric acid, ethyl alcohol, acetic acid, and lactic acid. The specifically labeled glucose compounds were used in these experiments to determine the effects of FAA on the utilization of specific carbohydrates of glucose during glucose catabolism. However, no specific localized effects of FAA were observed, so that the values obtained from the experiments with specifically labeled 14C-glucose compounds were used to calculate the theoretical distribution of uniformly labeled 14C-glucose in the various end products to provide a basis of comparison of the effect of FAA on the metabolism of vegetative and sporulating cells (M. F. Campbell, Ph.D. Thesis, Univ. of Illinois, Urbana, 1968). The results of these calculations are shown in Table 1. It was found that the addition of FAA reduced the amount of added 14C incorporated into end products by about 50% in both culture systems. The more specific effects of FAA were an increase in the amount of lactic acid and a decrease in the amount of butyric acid formed during the growth of FAA-inhibited sporulating cultures. The addition of FAA to vegetative cultures resulted in an approximately 50% decrease in the amount of butyric acid, lactic acid, and acetic acid formed.

Fractionation (10) of the cells obtained from the above cultures grown in the presence of the vari-
Thus, sporulation of L-arabinose-grown cells was observed, as indicated by the formation of refractile spores of *C. thermosaccharolyticum* at a site other than the aconitase enzyme; however, the site of inhibitory action was not determined.

This investigation was supported by U.S. Department of Agriculture grant no. 12-14-100-7651(74) and by U.S. Public Health Service training grant 8-T01-UH01036.

LITERATURE CITED

Statement of Ownership, Management and Circulation required by the Act of October 23, 1962; Section 4369, Title 39, United States Code.

1. Date of Filing: 30 September 1966.
2. Title of Publication: Applied Microbiology.
3. Frequency of Issue: Monthly.
4. Location of Known Office of Publication: Mount Royal and Guilford Aves., Baltimore, Maryland 21202.
5. Location of the Headquarters or General Business Offices of Publisher: 4715 Cordell Ave., Bethesda, Maryland 20014.
6. Publisher: American Society for Microbiology, 4715 Cordell Ave., Bethesda, Maryland 20014.
9. Owners: (If owned by a corporation, its name and address must be stated and also immediately thereunder the names and addresses of stockholders owning or holding 1 percent or more of total amount of stock. If not owned by a corporation, the names and addresses of the individual owners must be given. If owned by a partnership or other unincorporated firm, its name and address, as well as that of each individual, must be given.) American Society for Microbiology, 4715 Cordell Ave., Bethesda, Maryland 20014.

10. Known bondholders, mortgagees, and other security holders owning or holding 1 percent or more of total amount of bonds, mortgages or other securities are: None.

11. For completion by nonprofit organizations authorized to mail at special rates (section 188.188, Postal Manual): The purpose, function, and nonprofit status of this organization and the exempt status for Federal income tax purposes have not changed during preceding 12 months.

(a) (b)

10. A. Total No. Copies Printed (Net Press Run) 6311 9618

B. Paid Circulation
 1. Sales Through Dealers and Carriers
 Street Vendors and Counter Sales
 2. Mail Subscriptions
 3. Mail Distribution (including samples)
 Street Vendors and Counter Sales
 by Mail
 by Carrier or other means
 Total Distribution
 (Sum of C and D)
 Left-Over, Unaccounted, Spotted after Printing
 Total (Sum of E & F—should equal net press run shown in A)

6311 6918

* Average number of copies for each issue during preceding 12 months.
† Single issue nearest to filing date.
I certify that the statements made by me above are correct and complete. (Signed) Robert A. Day, Managing Editor.