Growth and Metabolism of Live Vaccine Strain of *Pasteurella tularensis*

JENO M. SCHARER,1 FREDERICK KLEIN, AND RALPH E. LINCOLN

Fort Detrick, Frederick, Maryland 21701

Received for publication 4 March 1968

The growth and metabolism of the live vaccine strain of *Pasteurella tularensis* in different media were investigated. Maximal growth was observed in a medium containing a sulfuric acid digest of casein as amino acid source. Amino acid metabolism produced considerable ammonia, and the rate of ammonia evolution was directly proportional to the growth rate. The most likely route for amino acid breakdown is nonspecific oxidative deamination.

Most studies on nutritional requirements of *Pasteurella tularensis* have been restricted to the virulent strains. Early research on the virulent strain was conducted in peptone-blood medium with cysteine enrichment (7). In blood-free medium, the organism required a generous supply of other amino acids in addition to cysteine. This requirement was satisfied by the incorporation of hydrolysates of gelatin or casein acid digest (9, 14; R. C. Mills et al., Bacteriol. Proc., p. 37, 1949) into the medium.

Systematic study of amino acid requirement started with the development of chemically defined media. The first such medium was reported by J. T. Tamura and D. E. Fleming (Bacteriol. Proc., p. 37, 1949), but they did not report any results obtained with their medium. Traub, Mager, and Grossowicz (16) listed 13 amino acids as essential for the propagation of several strains of *P. tularensis*. Amino acid metabolism during growth caused a rapid accumulation of ammonia; consequently, the pH increased until it became growth-limiting. Direct dependence of growth on the total amino acid concentration in the medium was observed by Nagle, Anderson, and Gary (12). When the amino acid concentration was increased to 25 to 30 mg/ml, the cell yield was comparable to that in complex casein hydrolysate medium.

A comprehensive report on sugar metabolism of 60 strains of *P. tularensis* was published by Francis (8). All 60 strains utilized glucose, and 53 strains grew on glycerol. With some strains, Tamura and Gibby (14) obtained equivalent growth in media containing glucose or glycerol.

An interaction between glucose and amino acid requirements with respect to growth was shown by Traub et al. (16). The glucose requirement was substantially reduced by increasing the total amino acid content of the medium.

The live vaccine strain (LVS) of *P. tularensis* is a derivative of a heterogeneous strain obtained from the Soviet Union (17). Soviet publications on the live vaccine were reviewed extensively by Tigertt (15). Production media in the USSR were based on hydrolysates of gelatin, fish, liver, and meat, with glucose as the carbohydrate source (11). Eigelsbach et al. (4) used a liquid medium containing casein hydrolysate, cysteine, and thiamine to produce immunogenic live tularemia vaccine. In recent studies, Chamberlain (2) compared the growth-supporting potential of a chemically defined medium with that of a complex undefined medium; the organism grew at somewhat lower viable-cell populations in the defined medium, but otherwise appeared to retain its identity and to be equal in potency to cultures prepared in the undefined medium. Additions of uracil, adenine, and guanine to the synthetic medium did not enhance growth.

In the present study, the growth of *P. tularensis* LVS in different media was compared for the purpose of determining the optimal conditions for vaccine production. Particular emphasis was placed on amino acid, carbon, and oxygen requirements for growth.

Materials and Methods

The morphological and immunological characteristics of *P. tularensis* LVS were described by Eigelsbach et al. (3, 5, 6). The primary cultures were grown in casein acid digest medium and stored in liquid nitrogen.

The basic liquid culture medium had the following
composition (per liter): Basamine-Busch Yeast, 5 g;
cysteine-HCl, 0.1 g; thiamine-HCl, 0.01 g; NaCl, 5 g;
KH₂PO₄, 2.78 g; and K₂HPO₄, 1.16 g. Either casein
adigest or N-Z-Amine Type A (Sheffield Chemical
Co., Norwich, N.Y.) was added to the medium in a
sufficient amount to give a concentration of 0.85 to
1.05 mg of amino nitrogen per ml after sterilization.
Casein acid digest was prepared by autoclaving 20%
casein solution in 1.25 m H₂SO₄ at 121 C for 2 hr.
Our casein acid digest and N-Z-Amine Type A
preparations contained 38 and 63% amino nitrogen,
respectively.

Concentrations of 0.5% glucose or 0.5% glycerol
were used as carbon sources. In medium containing
glucose, the glucose was sterilized separately and
added aseptically to the basal medium after sterilization.
No separate sterilization was necessary with glycerol.

By using either glycerol or glucose as carbon sources
and casein acid digest or N-Z-Amine Type A as
amino acid sources, four combination media were
obtained: casein acid digest-glycerol (CAD-GLY),
casein acid digest-glucose (CAD-GLU), N-Z-Amine
Type A-glycerol (NZAA-GLY), and N-Z-Amine-glucose
(NZAA-GLU).

Growth studies in these media were conducted in
8-liter fermentors (New Brunswick Scientific Co., New
Brunswick, N.J.) with a 6-liter liquid working volume.
Agitation was maintained at 300 rev/min with a
single, flat-blade impeller, and aeration was at the
rate of 6 liters of air per minute. Each fermentor was
equipped with sterilizable pH electrodes (Leeds &
Northrop, Inc., Fullerton, Calif.) and polarographic
oxygen sensors (Beckman Instruments, Inc., Fullerton,
Calif.). The oxygen probe was sterilized chemically and inserted aseptically into the fermentor. The
initial pH of the medium was adjusted with 10 N
NaOH, and it was controlled by automatic addition
of 1 N HCl during the fermentation. Temperature was
maintained at 37 C.

Direct measurements of oxygen-utilization rates
were determined by the method of Hospodka (10).
After 6 hr of initial incubation, the flow of air to the
fermentor was periodically interrupted for 2 to 3 min
and the rate of depletion of oxygen from the liquid
was recorded. From the slope of the curve, the oxygen
utilization rate was determined.

The fresh inoculum consisted of 300 ml of an 18-hr
culture grown in 1.5-liter Fernbach flasks. Care was
taken to use an inoculum grown in the same medium as
as was used in the fermentor run.

In some experiments, the mixed amino acid source
was replaced with individual amino acids in concentra-
tions of 2.5 g/liter. These runs were conducted in
250-ml Erlenmeyer flasks containing 20 ml of medium.
The inoculum was 1 ml of a 16-hr culture. Flasks were
incubated for 18 hr at 37 C on a 100 oscillations/min
reciprocal shaker with 2-inch (5-cm) strokes. The
initial pH was adjusted to 6.2 with 10 N NaOH and
was uncontrolled during the incubation period.

The viable count was determined by plating on
glucose-cysteine-blood-agar (4). Colonies were
counted after 72 hr of incubation at 37 C. Optical
density (OD) was read on a Spectronic-20 colorimeter
(Bausch & Lomb, Inc., Rochester, N.Y.) at 620 mu.
Amino nitrogen and ammonia nitrogen analyses were
performed with an autoanalyzer (Technicon Instruments,
Ardsley, N.Y.). The glucose and glycerol con-
tents were determined by the methods of Somogyi
(13) and of Bailey (1), respectively.

RESULTS

Effect of carbon and amino acid source on
growth. Growth studies were conducted in the
New Brunswick fermentors at the controlled pH
of 6.6. Exploratory experiments on the effect of
pH had indicated that this pH level was the optimum for the propagation of *P. tularensis* LVS. Above this pH, the growth rate of the organism rapidly decreased.

A typical growth curve and ammonia formation in CAD-GLY medium are shown in Fig. 1. During growth, ammonia formation was considerable, and the rate of production was directly proportional to the growth rate of the organism. Although not shown, the amino nitrogen utilization curve exactly paralleled the ammonia curve. Of the total available amino nitrogen, 27% was utilized during the growth cycle.

With an aeration rate of 1 volume of air per volume of medium per min, the oxygen utilization rate was at 63% saturation level after 9 hr of incubation (Fig. 2). The minimal level in dissolved oxygen corresponded to the end of the logarithmic growth phase. At that time, the oxy-
gen utilization rate was 2.8 μg moles per liter per hr. After completion of growth, air utilization rapidly decreased. Oxygen utilization, as well as amino acid utilization, was directly proportional to the growth rate of the organism.

The hourly interruption of air for the determination of oxygen-utilization rates had no significant effect on the growth rate or final cell yield. Consequently, this was a rapid and simple method for indicating the metabolic state of the culture.

The same growth parameters are shown for NZAA-GLU media in Fig. 3 and 4. The organism displayed similar growth and metabolic patterns. However, the cell yield, growth rate, ammonia formation, and oxygen utilization were considerably lower than in the CAD-GLY system. Only 15% of the available amino nitrogen was utilized during the fermentation.

The fermentation characteristics of *P. tularensis* LVS in the four different types of medium are summarized in Table 1. Glucose was interchanged with glycerol without significant effect on the growth rate or cell yield. However, casein acid digest proved to be a significantly better amino acid source than N-Z-Amine Type A. In casein acid digest medium, the final cell concentration was consistently above 1.2×10^9 organisms/ml; organisms grew faster, and the total fermentation time was 2 to 3 hr shorter than in N-Z-Amine Type A medium. The total amino acid utilized was dependent on the cell yield. Higher terminal cell numbers were associated with more pronounced amino acid metabolism during the fermentation. The ratio of amino nitrogen utilized to ammonia formed was almost 1:1, indicating that the major pathway of amino acid utilization was deamination.

![Graph](http://aem.asm.org/)

FIG. 4. O_2 concentration and O_2 utilization versus time in N-Z-Amine Type A and glucose medium, pH 6.6.

<table>
<thead>
<tr>
<th>Amino acid source<sup>a</sup></th>
<th>Carbon source<sup>b</sup></th>
<th>No. of runs</th>
<th>Viable count (10<sup>9</sup>/ml)</th>
<th>Specific growth rate (OD units/hr)</th>
<th>Ammonia N_2 formed (mg/ml)</th>
<th>Amino N_2 utilized (mg/ml)</th>
<th>Glycerol or glucose utilized (mg/ml)</th>
<th>Max O_2 utilized (mmoles per liter per hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD</td>
<td>GLY</td>
<td>4</td>
<td>14.4</td>
<td>0.382<sup>e</sup></td>
<td>0.234<sup>e</sup></td>
<td>0.240<sup>e</sup></td>
<td>1.3<sup>e</sup></td>
<td>2.70<sup>e</sup></td>
</tr>
<tr>
<td>NZAA</td>
<td>GLY</td>
<td>4</td>
<td>11.0</td>
<td>0.267</td>
<td>0.209</td>
<td>0.213</td>
<td>ND</td>
<td>1.1</td>
</tr>
<tr>
<td>CAD</td>
<td>GLU</td>
<td>2</td>
<td>16.0</td>
<td>0.360</td>
<td>ND</td>
<td>ND</td>
<td>2.48</td>
<td>ND</td>
</tr>
<tr>
<td>NZAA</td>
<td>GLU</td>
<td>1</td>
<td>8.16</td>
<td>0.268</td>
<td>0.156</td>
<td>0.150</td>
<td>1.00</td>
<td>1.34</td>
</tr>
</tbody>
</table>

^a Casein acid digest medium (CAD) or N-Z-Amine Type A medium (NZAA).

^b Glycerol (GLY) or glucose (GLU).

^c Significant differences in growth rates and metabolic activities.

^d No data.
GROWTH AND METABOLISM OF P. TULARENSIS LVS

Fig. 5. Percentage amino acid utilization by Pasteurella tularensis LVS (growth in optical density units). (Trace amounts of amino acids present in the yeast supplement account for the values registered by the last set of bars.)

Mechanism of deamination. During growth experiments, ammonia formation was proportional to oxygen demand; consequently, oxidative deamination appeared to be a logical choice for the pathway of amino acid metabolism.

The overall equation for oxidative deamination is:

\[
\text{NH}_2 + \text{R-C-COOH} + \frac{1}{2}\text{O}_2 \rightarrow \text{R-C-COOH} + \text{NH}_3 + \text{H}_2\text{O}
\]

Thus, for each mole of NH\(_3\) formed, \(\frac{1}{2}\) mole of O\(_2\) is utilized, i.e.:

\[
\frac{P(\text{O}_2)}{P(\text{NH}_3)} = 0.5
\]

Equation 2 can be rewritten in differential (rate) form:

\[
\frac{dP(\text{O}_2)}{dt} = 0.5 \frac{dP(\text{NH}_3)}{dt} + BX
\]

During growth, oxygen may be utilized by pathways other than oxidative deamination. One may assume that the additional oxygen demand is proportional to the cell mass. Thus, a better approximation of the oxygen balance, equation 3, is:

\[
\frac{dP(\text{O}_2)}{dt} = 0.5 \frac{dP(\text{NH}_3)}{dt} + BX
\]
where $B = \text{proportionality constant}$, and $X = \text{cell mass in OD units}$. Rearranging equation 4, one obtains:

$$
\left(\frac{1}{X} \frac{dP(O_2)}{dt} \right) = 0.5 \left(\frac{1}{X} \frac{dP(NH_3)}{dt} \right) + B
$$

In Fig. 6, rate of oxygen utilization per unit cell mass (OD units) is plotted against rate of ammonia production per unit cell mass. The data are the pooled values of five experimental runs in CAD-GLY and NZAA-GLY media. The rate of oxygen utilization was obtained by the method of Hospodka (10), and the rate of ammonia production was determined by graphical differentiation of the total ammonia curve. By regression analysis, the slope of the curve was found to be 0.61. This value was not significantly different from the theoretical value of 0.5 at the 95% significance level. The line did not intersect the Y axis at the origin; therefore, not all the oxygen was associated with the deamination reaction.

DISCUSSION

The amino acid utilization of *P. tularensis* LVS is similar to that of the virulent strains, inasmuch as deamination causes pronounced ammonification of the medium during growth (16). If the pH is uncontrolled, the culture fluid turns alkaline, and the growth rate of the organism decreases. The most likely route of amino acid metabolism is oxidative deamination. Because oxidative deamination does not change the basic organic structure, the amino acids and their keto acid analogues may serve as energy sources, as well as carbon skeletons, for the organisms. Whether amino acids can completely replace glucose as a carbon source is not certain.

The primary function of both casein acid digest and N-Z-Amine Type A is to supply free amino acids in the medium, as it is unlikely that either contains any additional growth factors. Analysis of N-Z-Amine Type A showed 40% protein nitrogen present; therefore, the significantly lower cell yield in N-Z-Amine Type A medium may have been caused by the presence of some undigested protein which inhibited growth. After sulfuric acid hydrolysis, casein was almost completely decomposed to amino acids and ammonium salts, with less than 5% protein nitrogen. The mixed amino acid source can be replaced, to a great extent, by single amino acids.

It is somewhat difficult to assess the roles of individual amino acids in the medium. Unlike Chamberlain (2), we were unable to grow the live vaccine strain in completely synthetic medium. The Basamine-Busch yeast, an essential medium component, contains some free amino acids. As far as oxidative deamination is concerned, serine, proline, and aspartic acid are affected to a greater extent than the other amino acids. All three have been reported to be essential for the propagation of virulent strains. The live vaccine strain appears to have very little or no proteolytic activity. In the absence of a significant
amount of free amino acids, very limited ammonia formation and growth occur.

Although both glucose and glycerol are utilized by the LVS, the amounts required for growth are considerably less than for virulent strains. Comparable initial concentrations of glucose have been reported to be completely exhausted during the growth of the virulent SCHU strain (12).

The organism requires vigorous aeration for growth. The oxygen demand is maximal at the end of the logarithmic growth phase and rapidly declines in final stationary cultures. The major part of oxygen consumption is attributable to deamination activity. The oxygen uptake rate of the organism is a function of its growth rate, being highest in the most actively growing system. Working with virulent strains, Traub et al. (16) observed oxygen toxicity for P. tularensis at low population levels. We have observed no ill effect of relatively high oxygen concentrations on the live vaccine strain. Indeed, growth started in a logarithmic manner soon after inoculation at oxygen saturations of near 100%. On the other hand, under microaerophilic conditions, such as inadequately stirred shake flasks, growth tended to be scanty or, in some cases, absent. For some reason, this was especially true in shake flasks containing glycerol as a carbon source.

Nutritionally, the live vaccine strain is perhaps even more fastidious than the highly virulent strains. The concentrations of vitamins, amino acids, and oxygen, the temperature, and the pH must be carefully controlled. Unless adequate control measures are taken during medium preparation and fermentation, cell yield will fall below the maximal or average level.

The immunogenicity of live vaccines produced in the four different types of production media discussed in this paper is presently being investigated. Early results indicate that each medium produces immunologically active vaccine. Colonies produced on peptone-cysteine agar by cultures from each of the four vaccines are all of the immunogenic, smooth type.

ACKNOWLEDGMENTS

We acknowledge the assistance of H. T. Eigelsbach, B. G. Mahlandt, and H. Bonner (Fort Detrick, Frederick, Md.) throughout this study.

LITERATURE CITED