Isolation of an Enteropathogenic, Kanagawa-Positive Strain of
Vibrio parahaemolyticus from Seafood Implicated in Acute
Gastroenteritis

GEORGE T. SPITIE,† DAVID F. BROWN,† AND ROBERT M. TWEDT**

Food and Drug Administration, Brooklyn, New York 11232, and Division of Microbiology, Food and Drug
Administration, Cincinnati, Ohio 45226

Received for publication 9 February 1978

A strain of Vibrio parahaemolyticus, serotype O4/K4, that was Kanagawa
positive and reactive in the rabbit ileal loop test, was isolated in low numbers
from raw oysters implicated in a case of acute gastroenteritis. To our knowledge,
this is the first report of the isolation of a Kanagawa-positive strain from suspect
food in the United States.

A quarter of a century has elapsed since Fujino et al. (8) did their pioneer study of food
poisoning caused by Vibrio parahaemolyticus. In the interim, the organism has been recognized
not only as the principal cause of foodborne outbreaks of gastroenteritis in Japan, but also as
a health hazard in seafood consumed throughout the world (2). The source of V. parahaemolyti-
cus isolates is very closely associated with their hemolytic ability (10, 12, 14). In this relationship,
termed the Kanagawa phenomenon, most clinical isolates are hemolytic, whereas most envi-
ronmental strains are not. A strain’s hemolytic ability is directly related to its ability to produce
dilatation in the rabbit ileal loop test (3, 15, 16). Epidemiologists, therefore, use the Kanagawa
test as a measure of an isolate’s enteropathogenicity.

Although large numbers of Kanagawa-positive V. parahaemolyticus are frequently de-
tected in stool samples from victims of food poisoning outbreaks caused by this bacterium, documented isolation of this organism from in-
criminated food has been extremely rare. Of 4,426 patient stool isolates obtained during 606
food poisoning outbreaks in Tokyo from 1963 to 1973, over 88% were Kanagawa positive. In con-
trast, only 2.3% of the 814 strains isolated from incriminated foods were hemolytic (11).

In 1973, an outbreak of food poisoning caused by V. parahaemolyticus occurred aboard an
international charter flight from Bangkok to London. Kanagawa-positive strains of serotype
O2/K3 were isolated from patients and from suspected raw and dressed crab meat in dupli-
cate meals (13). However, there have been no reported isolations of Kanagawa-positive strains
from food incriminated in the 16 documented outbreaks of V. parahaemolyticus gastroenteri-
tis in the United States (4–6). This report describes the first isolation and identification of an
enteropathogenic Kanagawa-positive strain from the food implicated in an acute case of food
poisoning in this country.

In April 1977, a woman residing in Long Is-
land, N.Y., became acutely ill 3 h after consum-
ing raw oysters and boiled scallops. Her symp-
toms included numbness of hands and fingers,
dizziness, nausea, vomiting, diarrhea with rectal
bleeding, chills, and a fever of 38.3°C (101°F).
Because of the food type and the neurological
symptoms, paralytic shellfish poisoning was ini-
tially suspected by Food and Drug Administra-
tion investigators. A bacterial agent was strongly
suggested by the additional symptoms: the rel-
atively long onset time (3 h), fever, gastrointes-
tinal involvement, and the absence of respiratory
symptoms. Furthermore, the consumed shell-
fish were harvested from an area of the Ches-
apeake Bay that was previously (1971) involved
in gastroenteritis outbreaks caused by V. para-
haemolyticus (4). Samples of raw, seasoned scal-
llops and raw oysters from the same lot as those
consumed by the victim were tested for paralytic
shellfish poison according to Methods of Analy-
sis (1) and for V. parahaemolyticus as well as
traditional food-poisoning species according to the
Bacteriological Analytical Manual for
Foods (7).

Suspect food samples were negative for para-
lytic shellfish poison, coagulase-positive staph-
ylococci, and pathogenic enterobacteria. No typi-
ical V. parahaemolyticus colonies were detected in
thiosulfate-citrate-bile salts-sucrose agar plates from scallops. However, two of three rep-
licate plates of the 10⁸ dilution and one of the
10⁻¹ dilution of the oyster meat gave typical

† Present address: Food and Drug Administration, Cincin-
nati, OH 45202.

Copyright © 1978 American Society for Microbiology
dark-centered, smooth, green colonies. From these plates, four different isolates were chosen and tested for 34 morphological, physiological, and biochemical characteristics of *V. parahaemolyticus* (7, 9). Two isolates were *Vibrio* species; one was *V. anguillarum* (a fish pathogen) and the other, designated NY 477, was verified as Kanagawa-positive *V. parahaemolyticus* serotype O4/K4.

In addition to tests for the 17 identifying characteristics listed in the *Bacteriological Analytical Manual for Foods* (7), biochemical tests for 17 additional traits were performed, including the presence of catalase, urease, and ornithine decarboxylase; citrate utilization; nitrate and nitrite reduction; starch and esculin hydrolysis; and fermentation of arabinose, lactose, mannose, raffinose, rhamnose, xylose, adonitol, dulcitol, and salicin. In all tests, reactions of strain NY 477 were identical to those of the type strain (9) with the exception of delayed arabinose fermentation. In addition, strain NY 477 was reactive when tested by a rabbit ileal loop technique (16).

The enteropathogen was isolated from the 10⁶ level in one of two 50-g samples of raw oysters. Such a low level may reflect adverse conditions of sample exposure before analysis (namely, refrigeration storage for 1 day outside of the Food and Drug Administration facility and 2 days before the laboratory analysis for *Vibrio*). In addition, the oysters were harvested in April, when water temperatures are inimical to *V. parahaemolyticus* growth and when few food poisoning outbreaks have been documented.

Unfortunately, the hospital laboratory was not directed to look for *V. parahaemolyticus* in the patient’s stools. Coagulase-positive staphylococci and other pathogenic bacteria were not detected. However, the patient’s symptomology, typical of *V. parahaemolyticus* gastroenteritis, and the isolation of an enteropathogenic strain from the implicated food seems more than circumstantial to us. To our knowledge, this is the first report of the isolation of a Kanagawa-positive *V. parahaemolyticus* strain from food suspected of causing gastroenteritis in the United States.

LITERATURE CITED

