Monoclonal Antibody-Based Immunoassay for Type A Clostridium botulinum Toxin Is Comparable to the Mouse Bioassay

CLIFFORD SHONE,†* PETER WILTON-SMITH,1 NIGEL APPLETON,2 PETER HAMBLETON,1 NARENDRA MODI,1 STEPHEN GATLEY,2 AND JACK MELLING1

Vaccine Research and Production Laboratory, Centre for Applied Microbiology and Research, Porton Down, Salisbury,1 Wiltshire SP4 0JG,1 and IQ Bio Limited, Downham House, Downham Lane, Cambridge, CB4 1XG,2 England

Received 18 January 1985/Accepted 9 April 1985

A monoclonal antibody (BA11) has been produced against Clostridium botulinum type A neurotoxin by the fusion of myeloma cells (P3 NS1/1-Ag4-1) with spleen cells from BALB/c mice immunized with botulinum type A neurotoxic. The antibody bound specifically to botulinum type A neurotoxin, showing no cross-reactivity with types B and E botulinum toxins or with any of several other bacterial toxins tested. The monoclonal antibody did not bind to botulinum type A neurotoxin which had been denatured with sodium dodecyl sulfate and bound only weakly to each of the separated heavy and light subunits of the neurotoxin, suggesting a conformational requirement for the antigenic determinant of the antibody. A sensitive immunoassay for C. botulinum type A toxin with monoclonal antibody BA11 in conjunction with an enzyme amplification system has been developed which allows detection of 5 to 10 mouse 50% lethal doses mℓ−1 of purified neurotoxin. The assay was equally sensitive when applied to the detection of crude toxin in food stuffs; the average value for the minimum level of detectable toxin in extracts of tinned salmon or corned beef was 9 ± 3.1 mouse 50% lethal doses mℓ−1.

The neurotoxins produced by the eight types of Clostridium botulinum act primarily at the neuromuscular junction and cause the syndrome botulism, which is frequently a fatal condition in humans and animals (13, 14). Much effort has been imparted by the food industry to ensure the adequacy of food treatment processes to prevent the growth and toxin production of C. botulinum, and there is considerable need for rapid, sensitive assays for these toxins that do not require the use of laboratory animals.

Acute toxicity tests in mice (12) presently provide the only assay for botulinum toxins of sufficient sensitivity to allow the detection of low levels (<5 mouse 50% lethal doses [MLD50] mℓ−1) in food stuffs and biological samples. Assays involving intraperitoneal injection of toxin take up to 4 days to complete, and although direct injection into a tail vein can shorten the assay time to a few hours, the latter procedure requires considerable operator skill and is tedious to perform and monitor. Furthermore, mouse toxicity results are not in themselves specific; specificity is only imparted by carrying out parallel toxin neutralization tests with homologous antiserum. Enzyme-linked immunosorbent assays (ELISAs) developed for botulinum toxins (1, 7, 9–11), although they provide relatively rapid and specific assays for these toxins, are at present insufficiently sensitive to replace the mouse bioassay.

Hybridoma cell lines which secrete antibody specific to a toxin provide a potentially inexhaustable supply of antibody which may be used in ELISAs. In this report, we describe the properties of a monoclonal antibody produced against C. botulinum neurotoxin and its use in an amplified ELISA for the toxin with a lower limit of detectable toxin approaching that of the mouse bioassay.

MATERIALS AND METHODS

Sources of toxins. C. botulinum type A (NCTC 2916) type B (Okra) and type E (Eye Alaska) were used. Bacteria were grown in 20-liter cultures for 48 h, after which toxin was precipitated by addition of 1.5 M H2SO4 to spent cultures to give a final pH of 3 to 3.5 by a modification (5) of previously described methods (2).

Diphtheria toxoid was kindly provided by K. Redhead, National Institute for Biological Standards and Control, Hampstead, London. Staphylococcus aureus enterotoxins and Clostridium perfringens enterotoxin A were kindly donated by H. S. Tranter of Public Health Laboratory Service, Center for Applied Microbiology and Research, Porton Down, England, and Clostridium difficile toxins were a kind gift from N. Sullivan of the Virginia Polytechnic Institute and State University, Blacksburg, Va. Tetanus toxin was a gift from P. Walker, Wellcome Laboratories, Dartford, England.

Purification of C. botulinum neurotoxins. C. botulinum type A neurotoxin (specific toxicity, 2 × 108 MLD50s mg of protein−1) was purified by previously described methods (5) including affinity chromatography on p-aminophenyl-β-D-thiogalactopyranoside–Sepharose-4B (8) followed by chromatography on DEAE-Sephalac at pH 7.9.

The purification of C. botulinum type B neurotoxin was identical to that described for type A neurotoxin, except for the final purification. Affinity-purified type B neurotoxin (8 × 108 MLD50s) was dialyzed against Tris-hydrochloride buffer (0.1 M, pH 7.9) and loaded onto a column of DEAE-Sephalac (10 by 0.6 cm) equilibrated in the same buffer. Type B neurotoxin (specific toxicity, 1.1 × 106 MLD50s mg of protein−1) was eluted from the column with 0.15 M Tris-hydrochloride (pH 7.9) containing 18 mM NaCl.

Impure C. botulinum type E neurotoxin was obtained by the method described for type A neurotoxin (5). To purify the neurotoxin component, impure toxin (7 × 108 MLD50s) was dialyzed against 0.15 M Tris-hydrochloride buffer (pH 7.9) and loaded onto a column of DEAE-Sephalac equilibrated on the same buffer. After washing with a further 20 ml of the Tris-hydrochloride buffer, elution was continued with a gradient of NaCl (100 ml of 0 to 0.5 M NaCl in 0.15 M
Tris-hydrochloride [pH 7.9]). Pure type E neurotoxin (2 ×
10^8 MLD_{50} s mg of protein−1) was obtained by selecting the fraction
of highest specific activity from the first protein
peak to elute after application of the salt gradient.

Purification of neurotoxin subunits. *C. botulinum* type A
neurotoxin (5 mg, 1.5 mg ml−1) was dialyzed against Tris-
hydrochloride buffer (0.1 M, pH 7.9) containing 2.5 M urea
and 1 M NaCl. Dithiothreitol was added (final concentration,
100 mM) to the toxin solution, which was incubated for
16 h at 20°C; the resulting precipitate of light chain was
collected by centrifugation (10,000 × g, 10 min), and the
supernatant fluid containing the heavy chain was retained.
The precipitated light subunit was washed, by resuspension
with a ground glass homogenizer, in 1 ml of Tris-
hydrochloride buffer (0.1 M, pH 7.9) containing 2.5 M urea, 1 M
NaCl, and 10 mM dithiothreitol and further washed twice
with 1-ml portions of Tris-hydrochloride buffer (0.1 M, pH
7.9) containing 0.5 M NaCl and 10 mM dithiothreitol.

The solution of the heavy subunit was dialyzed overnight
at 4°C against Tris-hydrochloride buffer (0.1 M, pH 7.9)
containing 0.2 M NaCl and 10 mM dithiothreitol and centri-
fuged at 10,000 × g for 10 min. Both subunit preparations
were stored at 4°C.

Production of hybridoma cell lines. Purified botulinum type
A neurotoxin (0.5 mg ml−1) was dialyzed against 0.1 M
sodium phosphate buffer (pH 7.0) and inactivated with 0.6%
neutralized formaldehyde (30°C, 14 days); subsequently,
excess formaldehyde was removed by dialysis against 0.1 M
sodium phosphate buffer (pH 7.0).

Ouchterlony double immunodiffusion. Ouchterlony double
immunodiffusion with a range of antitoxin immunoglobulin subclass sera
(immunoglobulin M [IgM], IgA, IgG1, IgG2a, IgG3; Miles
Laboratories, Inc.) and sodium dodecyl sulfate-
polyacrylamide gel electrophoresis on polyacrylamide slab
gels (4 to 30% acrylamide; PAA/4/30; Pharmacia Fine
Chemicals) were carried out as described previously (15). To obtain antibody at high concentration, approximately
10^8 hybridoma cells were inoculated into the peritoneal
cavity of BALB/c mice previously primed with pristane;
ascent fluid was collected 10 to 20 days later. Antibody was
purified from ascites fluids by affinity chromatography on
protein A-Sepharose (4).

Analytical techniques. Ouchterlony double immunodiffusion
with a range of antitoxin immunoglobulin subclass sera
(immunoglobulin M [IgM], IgA, IgG1, IgG2a, IgG3; Miles
Laboratories, Inc.) and sodium dodecyl sulfate-
polyacrylamide gel electrophoresis on polyacrylamide slab
gels (4 to 30% acrylamide; PAA/4/30; Pharmacia Fine
Chemicals) were carried out as described previously (15).

Isoelectric focusing was performed on precast thin-layer
polyacrylamide gels (Ampholine Pagg late, pH 3.5 to 9.5;
LKB Bromma) by using a LKB Multiphor apparatus with 1
M H_3PO_4 as the anode electrode solution and 1 M NaOH
at the cathode electrode. After electrophoresis, gels were fixed
in 0.7 M trichloroacetic acid–0.14 M 5-sulphosalicylic acid
for 1 h, stained with 0.1% Coomassie blue R250 in 25%
(vol/vol) ethanol–8% (vol/vol) acetic acid, and destained in
25% (vol/vol) methanol–8% (vol/vol) acetic acid.

Toxin neutralization test. Antibody ascites fluids (0.1 ml, containing 5 to 10 mg of antibody ml−1) were mixed with
dilutions of *C. botulinum* type A neurotoxin (0.25 ml, 5 to
5.000 mouse MLD_{50} s ml−1) in 0.07 M sodium phosphate
buffer (pH 6.5) containing 0.2% gelatin, incubated for 1 h
at 30°C and diluted to 2 ml with 0.1 M sodium phosphate buffer;
5-ml volumes were injected intraperitoneally into Porton mice
in groups of four. Deaths were recorded over a period of 4
days.

ELISA for monoclonal antibodies. Hybridomas were
screened, and the cross-reactivity of monoclonal antibodies
was assessed by an ELISA with neurotoxin-coated microtiter
plates. Neurotoxin solution (20 μg ml−1 in 50 mM
sodium phosphate buffer [pH 8.0]; 0.1 ml well−1) was used to
coat polystyrene microtiter plates (Dynatech M129A) and
left overnight at 4°C; the toxin solution was then removed,
and the plates were washed three times with phosphate-
buffered saline (pH 7.4) containing 0.1% Tween 20 (PBST)
and incubated for 1 h at 37°C with 0.07 M sodium phosphate
buffer (pH 6.5) containing 0.2% gelatin and 1% bovine serum
albumin (GPBSA). After a further three washes with PBST,
hybridoma supernatants (50 μl) were added to the wells,
which were then incubated for 90 min at room temperature
with shaking. The plates were then washed twice with
PBST, rabbit antimouse peroxidase conjugate (100 μl per
well, Dakopatt diluted 1 in 200 with GPBSA) was added,
and the plates were incubated with shaking for 90 min at room
temperature. After three washes with PBST, 100 μl of
substrate solution (5-aminosalicylic acid [1 mg ml−1] [3], 0.05
M sodium phosphate buffer [pH 6.0], 0.06% hydrogen per-
oxide) was added, and the reactions were allowed to proceed
for 20 min; absorbances were measured at 450 nm with a
Dynatech MR580 plate reader.

**Preparation of alkaline phosphatase-conjugated guinea-pig
antibotulinum type A toxin.** Guinea pigs were immunized
by intramuscular injection of (1 ml, 100 μg) neurotoxin in
Freund complete adjuvant followed by further doses (100 μg)
in Freund incomplete adjuvant at 2, 6, 10, and 14 weeks.
Immunoglobulins were precipitated from the guinea pig
serum by slow addition of an equal volume of 80% saturated
ammonium sulfate solution (pH 7.0). After centrifugation at
20,000 × g for 15 min, the precipitate was dissolved in
phosphate buffer (0.1 M, pH 6.8; 5 ml of original
serum−1), and the precipitation process was repeated. The
precipitate was then suspended in phosphate buffer (0.075
M, pH 6.8; 0.5 ml of original serum−1), dialyzed against
4 liters of the same buffer at 4°C, and mixed with Ultro SE
Sephacel (0.2 g ml of original serum−1) equilibrated in
the phosphate buffer. After stirring for 20 min, the supernatant
was obtained by centrifugation at 15,000 × g for 10 min,
aliquoted, and stored frozen at −20°C.

Conjugation of 2-ml aliquots of guinea pig IgG fraction
(1 ml of protein neutralized 95,000 MLD_{50} s of botulinum
type A toxin) to calf intestinal alkaline phosphatase was
performed by IQ Bio Ltd. by using succinimidyl 4-(N-
maleimidomethyl) cyclohexane-1-carboxylate (details
presently commercial in confidence). The conjugate was diluted
600-fold with a solution containing 0.5 M NaCl, 0.2 M
ammonium sulfate, 1 mM MgCl_2, 0.1 mM ZnCl_2, 0.1%
(vol/vol) Triton X-100, 4% (wt/vol) bovine serum albumin,
and 0.1 mM triethanolamine at pH 7.5 before use.

Amplified ELISA for *C. botulinum* type A neurotoxin.
Microtiter plates (Nunc) were coated (100 μl well−1) with 15
μg of purified BA11 monoclonal antibody ml−1 in 20 mM
citrate buffer (pH 5.0) and incubated overnight at 37°C. The
plates were washed three times with a solution containing
5% (vol/vol) lactose, 0.5% (wt/vol) bovine serum albumin,
0.1% (vol/vol) Triton X-100, and 0.01% (wt/vol) Thiomersal
at pH 7.5, allowing the final wash to incubate for 30 min
before tapping dry. Coated plates were then freeze dried and stored desiccated at 4°C until use.

Toxin solutions, diluted with 100 mM Tris-hydrochloride buffer (pH 7.5) containing 0.2% gelatin, were pipetted into plate wells (100 μl well−1) followed by 20 μl of alkaline phosphatase-conjugated guinea pig antitoxin type A toxin solution, and the mixture was incubated for 4 h with shaking, after which plates were washed six times with 100 mM Tris-hydrochloride buffer (pH 8.0) containing 150 mM NaCl, 1 mM MgCl2, 0.1 mM ZnCl2, and 0.005% (vol/vol) Triton X-100. Freshly prepared NADP+ substrate solution (0.2 mM in 50 mM ethanolamine buffer [pH 9.0]) was added (80 μl well−1), and the reaction was allowed to proceed for 30 min at 20°C with shaking. Amplifier solution containing 0.2 mg of alcohol dehydrogenase ml−1, 0.2 mg of diaphorase ml−1, 3% (vol/vol) ethanol, and 1 mM iodonitrotetrazolium violet in 25 mM phosphate buffer (pH 7.0) was then added (220 μl well−1), and the color was allowed to develop for 10 min at 20°C before the reaction was stopped by the addition of 50 μl of 0.2 M H2SO4.

Absorances were measured at 490 nm, and the resulting data were analyzed with a Dynatech MR580 ELISA reader interfaced with a BBC microcomputer. Toxin in extracts was determined (in duplicate) by the mouse bioassay, and the concentration of toxin giving an absorbance of 0.3 U above the blank value in the ELISA was determined.

RESULTS AND DISCUSSION

Hybridoma cell line BA11 produces antibody with a high binding activity for C. botulinum type A neurotoxin in a solid-phase immunoassay. Isotype analysis of the hybridoma product revealed the antibody to be of the IgG1 class, and subsequent examination of the purified antibody by sodium dodecyl sulfate gel electrophoresis under reducing conditions showed the molecular weights of the heavy and light chains to be consistent with this observation. Isoelectric focusing of the purified antibody revealed several strong protein bands in a limited region with no indication that more than one antibody was present in the hybridoma product.

The binding of monoclonal antibody BA11 to a variety of bacterial toxins was assessed by an ELISA with solid-phase toxin (Table 1). Antibody BA11 bound specifically to C. botulinum type A neurotoxin and showed no cross-reactivity with type B and E neurotoxins or with any other toxin tested. Similar high specificity was also observed with homologous polyclonal antisera used in this study and elsewhere (10).

Using similar assays, the binding of monoclonal antibody BA11 to the separated heavy (100,000-dalton) and light (50,000-dalton) subunits of botulinum type A neurotoxin was assessed (Fig. 1a). There was a strong reaction between the antibody and the native toxin, whereas both the separated neurotoxin subunits gave only a weak response in the ELISA with signals that plateaued at absorbance values below 0.1 in each case. In a control experiment, native toxin and both subunits each reacted strongly with homologous mouse polyclonal antisera (Fig. 1b).

The comparatively weak binding of the antibody to the individual toxin subunits implies that the structure of the antigenic site on the native toxin is largely destroyed during the separation of the subunits. This suggests that the antigenic determinant involved is of the discontinuous type, i.e., one in which the epitope comprises amino acid sequences that are separated in the primary sequence of the neurotoxin but are brought together as a consequence of the tertiary structure of the protein. Consistent with this possibility is the fact that denaturation of the neurotoxin with sodium dodecyl sulfate and 2-mercaptoethanol abolishes the antibody-toxin reaction (Table 1).

Ascites fluid (containing ca. 5 mg of antibody ml−1) derived from BA11 hybridoma cell line failed to precipitate botulinum type A neurotoxin in double immunodiffusion tests but did display weak toxin-neutralizing activity; 0.1 ml of BA11 ascites neutralized approximately 50 MLD50 of botulinum type A neurotoxin. This weak neutralizing activity may be an indication that the antibody-binding site(s) is not on or close to a biologically active region of the molecule. The inability of BA11 to precipitate the toxin may reflect the presence of a single binding site for the antibody on the neurotoxin molecule but could equally be due to BA11 being monovalent or unable to form the necessary lattice structures because of steric hindrance.

An amplified ELISA developed for the detection of botulinum type A toxin is depicted in Fig. 2. Each molecule of NAD+ generated by the antibody-alkaline phosphatase conjugate initiates the formation of several hundred colored formazan molecules thus providing an amplification factor. With this amplified ELISA, three separate determinations of purified C. botulinum type A neurotoxin (specific toxicity, 1.5 × 108 MLD50 mg of protein−1), gave values for the lowest detectable level of toxin of 5, 7, and 10 MLD50 ml−1. Determination of toxin by using a conventional single-sandwich assay similar to that depicted in Fig. 2 but with guinea pig anti-botulinum peroxidase conjugate (5-amino salicylic acid as substrate) in place of the alkaline phosphatase system gave a lower limit of detectable toxin of between 300 and 1,000 MLD50 ml−1 (C. Shone, unpublished data). Thus, the enzyme amplification system afforded almost a

Table 1. Binding of monoclonal antibody BA11 to various toxin types measured by ELISA

<table>
<thead>
<tr>
<th>Solid-phase toxin</th>
<th>A_{405} of the following dilution of BA11 monoclonal antibody culture supernatant^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>0</td>
</tr>
<tr>
<td>Clostridium botulinum</td>
<td>1.37</td>
</tr>
<tr>
<td>Neurotoxin type A</td>
<td>0</td>
</tr>
<tr>
<td>Neurotoxin type B</td>
<td>0</td>
</tr>
<tr>
<td>Neurotoxin type E</td>
<td>0</td>
</tr>
<tr>
<td>Neutotoxin type A denatured with SDS</td>
<td>0.03</td>
</tr>
<tr>
<td>Clostridium tetani neurotoxin</td>
<td>0.01</td>
</tr>
<tr>
<td>Clostridium perfringens enterotoxin A</td>
<td>0</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>0.01</td>
</tr>
<tr>
<td>Toxin type A</td>
<td>0</td>
</tr>
<tr>
<td>Toxin type B</td>
<td>0</td>
</tr>
<tr>
<td>Corynebacterium diphtheria toxoid</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td></td>
</tr>
<tr>
<td>Enterotoxin type A</td>
<td>0</td>
</tr>
<tr>
<td>Enterotoxin type B</td>
<td>0</td>
</tr>
<tr>
<td>Vibrio cholerae toxin</td>
<td>0.02</td>
</tr>
</tbody>
</table>

^a All data are average absorbance values of six ELISA wells (standard deviation, <15% in each case).
corned beef were artificially contaminated with either clostridial spores or portions of culture supernatant; toxin present in food extracts was determined with the mouse bioassay and the immunoassay. Figure 3 shows the results of a typical assay for botulinum toxin in salmon extract in which approximately 10 MLD50s ml⁻¹ could be detected by the ELISA. Nine determinations of botulinum toxin food extracts (Table 2) gave an average lower limit of detectable toxin an arbitrary end point of 0.3 absorbance units above background levels) equivalent to approximately 9 (standard deviation, 3.1) MLD50s ml⁻¹. Careful analysis of precisely measured absorbance values may allow a lower endpoint value to be used, which would result in a more sensitive

To investigate the potential of the amplified ELISA for the assay of botulinum toxin in foodstuffs, cans of salmon and

FIG. 1. Binding of monoclonal antibody BA11 (a) and polyclonal mouse antitoxin type A neurotoxin (b) in ELISAs with solid-phase toxin components: type A neurotoxin (×), heavy subunit (○), and light subunit (■). Subunit preparations of the neurotoxin were coated onto microtiter plates at 20 µg ml⁻¹ in 0.1 M sodium phosphate buffer (pH 8.0) containing 20 mM 2-mercaptoethanol. The partially soluble light subunit was dispersed with a glass homogenizer before coating.

FIG. 2. Amplified ELISA system for C. botulinum type A toxin.

FIG. 3. Determination, with an amplified ELISA, of toxin levels in an extract of tinned salmon contaminated with C. botulinum type A toxin (○) and C. botulinum type B culture supernatant (■) (MLD50s for type B toxin were 10 times those indicated).
assay. The sensitivity of the immunoassay was unaffected by the constituents of the salmon extract, since the level of detection was unchanged even when uncontaminated salmon extract was used as a diluent for the toxin instead of Tris-hydrochloride-gelatin buffer.

Previously developed in vitro assays for *Clostridium botulinum* type A toxin (1, 10) have proved insufficiently sensitive to replace the mouse bioassay for the diagnosis of type A food-borne or infant botulism: the sensitivities of these assays are approximately 50-fold lower than the currently used mouse bioassay. The immunoassay developed by Dezfulian and Bartlett (1) has the additional drawback that nontoxic proteins of type A *Clostridium botulinum* also appear to be detected, which may increase the possibility of false-positive reactions occurring in the ELISA.

The amplified immunoassay described in this report provides a convenient test for *Clostridium botulinum* type A toxin with a sensitivity approximately 10-fold greater than that of the previously reported in vitro assays. At the arbitrary endpoint value of 0.3 absorbance units above background levels, an endpoint easily discernible by eye, approximately 9 MLD_{50}s ml\(^{-1}\) could be detected in the foodstuffs tested, which is equivalent to detection of less than 1 MLD_{50} in the 0.1-ml portion used for the immunoassay. Compared with the sensitivity of the mouse bioassay (2 MLD_{50}s ml\(^{-1}\), assuming 0.5 ml of toxin injected per mouse) the sensitivity of the amplified ELISA is only fivefold lower and as such is sufficiently sensitive to replace the mouse assay in a majority of food industrial and laboratory applications. This could greatly reduce the usage of mice in the detection and quantitation of type A toxin. The ELISA has the additional advantage in that a result can be obtained in less than 6 h compared with the 4 days necessary for the intraperitoneal mouse lethality test which is so widely used at present.

In conclusion, monoclonal antibody BA11 appears to be a useful reagent for the detection of botulinum type A toxin in foods. The antibody appears specific to *Clostridium botulinum* type A neurotoxin and, when used in conjunction with the ELISA amplification system developed by IQ Bio Ltd., provides an immunoassay for the toxin with a sensitivity approaching that of the mouse bioassay.

Monoclonal antibodies are presently being produced in this laboratory against *Clostridium botulinum* type B, E, and F neurotoxins, which will allow the development of equally sensitive immunoassays for these toxins.

ACKNOWLEDGMENTS

We thank Nigel Bailey, Brian Capel, Roger Rhind-Tutt, and Sarah Bennett for their excellent technical assistance and Janet Peat for typing the manuscript.

LITERATURE CITED

