Cellulose Decomposition and Associated Nitrogen Fixation by Mixed Cultures of *Cellulomonas gelida* and *Azospirillum* Species or *Bacillus macerans*

DOROTHY M. HALSALL* and ALAN H. GIBSON

Commonwealth Scientific and Industrial Research Organisation Division of Plant Industry, Canberra City, A.C.T. 2601, Australia

Received 5 March 1985/Accepted 8 June 1985

Mixed cultures of *Cellulomonas gelida* plus *Azospirillum lipoferum* or *Azospirillum brasilense* and *C. gelida* plus *Bacillus macerans* were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of straw consumed. *Cellulomonas* species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O\(_2\) (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of *A. brasilense* and *C. gelida* all reached a stable ratio of approximately 1 *Azospirillum*/*3 Cellulomonas* cells.

The microbial breakdown of straw and other agricultural residues which are rich in cellulose is usually limited by the low nitrogen content of these products. When straw is incorporated into the soil, the amount of plant-available nitrogen is diminished by its incorporation into the increased microbial biomass associated with straw decomposition (21), thus diminishing that available for plants. This limitation would be alleviated if an association could be formed between cellulose-decomposing and nitrogen-fixing organisms such that each supplies the requirements of the other for combined nitrogen and degradable carbon, respectively.

This concept is not new; it was investigated by Jensen and Swaby (9) and Jensen (8) with a number of cellulolytic organisms and *Azotobacter* spp. (9) or *Clostridium butyricum* (8). Mixed cultures of these organisms degraded cellulose or straw and fixed atmospheric nitrogen under conditions of limited aeration and, in the case of *Azotobacter* spp., at neutral pH. A different approach combining cellulolytic fungi and anaerobic nitrogen-fixing organisms (14, 24) has also been successful under conditions of limited aeration.

In both of these types of association, the critical factor is the degree of aeration, the cellulolytic partner usually requiring oxygen, and the nitrogen-fixing partner being inhibited by oxygen (although *Azotobacter* spp. are more tolerant to oxygen than are other diazotrophs). As a result, the two organisms must be separated spatially, the products of one partner diffusing to the other. The diffusing product is available to all other organisms in the immediate vicinity, thus reducing the efficiency of the interaction under nonsterile conditions.

Field studies (20) have shown that nitrogenase activity may be associated with the decomposition of wheat straw incorporated into moist soils. A problem associated with waterlogged or anaerobic conditions in soil is that the final breakdown products of straw tend to be phytotoxic (13). Hence, it is important that the bacteria responsible for cellulose breakdown and those fixing N\(_2\) be able to function under conditions that do not favor the accumulation of acetic acid and other fatty acid end products.

This study examines cooperative cellulose decomposition and nitrogen fixation by mixed cultures of *Cellulomonas gelida* plus *Azospirillum* spp. and *C. gelida* plus *Bacillus macerans*. These organisms were selected as potential partners because all can function under microaerobic conditions (4, 5, 15) and *Cellulomonas* spp. tend to form a close association with a substrate (18); extracellular enzyme is only released into the medium in quantity at the end of exponential growth (1).

MATERIALS AND METHODS

Cultures. *Azospirillum brasilense* Sp7 (ATCC 29145) and *A. lipoferum* 5A (from J. Döbereiner, EMBRAPA, Sérópolis, Rio de Janeiro, Brazil) and *B. macerans* 8514 (from W. J. Brill, University of Wisconsin, Madison) were provided by courtesy of F. J. Bergersen. *B. macerans* 111 was isolated from soil previously amended with straw and identified by computer-assisted procedures for the identification of dinitrogen-fixing bacteria (17). *C. gelida* UQM 2480 was obtained from L. Sly, University of Queensland, St. Lucia, Queensland, Australia.

Experimental conditions. (i) Sand cultures. Mixed cultures of *C. gelida* and *Azospirillum* spp. or *B. macerans* were established in sand (6) with cellulose or straw as the sole carbon source and with little or no combined nitrogen to follow the course of nitrogen fixation or C\(_2\)H\(_2\) reduction. River sand (<1.4-mm mesh) was heated at 60°C in concentrated HCl for 16 h, washed in running water for 6 h, rinsed in 20 mM CaCl\(_2\) for 20 min, rinsed in water for 5 min, and dried; 20-g amounts were added to Universal bottles and autoclaved twice. Cellulose (100 mg, Avicel microcrystalline; Merck) or finely ground wheat (cv. Songlen) straw (100 mg, sterilized by 10 Mrad, y irradiation; Australian Atomic Energy Commission, Lucas Heights, New South Wales, Australia) was added aseptically to the autoclaved sand and mixed thoroughly. Washed cell suspensions (0.5 ml) of each organism were added to the sands which were adjusted to 27.5% (wt/wt) moisture content.

* Corresponding author.
(almost saturated) with nutrient solution. This solution contained (per liter): MgSO₄·7H₂O, 0.2 g; NaCl, 0.1 g; CaCl₂, 0.02 g; Na₂MoO₄·2H₂O, 0.002 g; MnSO₄·H₂O, 0.01 g; FeNaEDTA (1.64% [wt/vol] aqueous), 4.0 ml. Sterile phosphate buffer KH₂PO₄·NaOH (pH 7.0) (final concentration of 100 mM) and filter-sterilized vitamins (biotin, 5 mg; p-aminobenzoate, 10 mg; thiamine, 10 mg) were added aseptically to complete the solution. When cellulose was used as the carbon source, a low level of starter nitrogen [(NH₄)₂SO₄, 10 mg/liter] was added to the nutrient solution. After inoculation, the bottles were sealed with autoclaved Suba seals (Wm. Freeman, Barnsley, United Kingdom) and were incubated at 30°C. The gas phase above the sand was 13 ml.

Concentrations of CO₂ in the gas phase were monitored daily before being flushed with filtered compressed air to maintain the O₂ concentration and remove accumulated CO₂. After 5 to 7 days, C₂H₂ (3.0 ml) was injected into each bottle, and 24 h later (and other intervals as indicated), the concentrations of CO₂, C₂H₄, and C₂H₂ in the gas phase (13 ml) were determined (6, 23). In the 30-day experiment, C₂H₂ and C₂H₄ were removed from the cultures by evacuation before being flushed with air and reincubated for a further 11 days. At the completion of the experiment, straw and cellulose were extracted from the sand by flotation and filtration, and dry weights were determined. Total nitrogen was determined after Kjeldahl digestion of two sets of four replicates of all treatments; these sets had not been exposed to acetylene.

All experiments were done with four replicates.

(ii) Liquid cultures. The degradation of cellulose and straw in the presence of combined nitrogen and under a range of oxygen concentrations was followed in liquid culture. A mineral salts medium (11) amended with FeNaEDTA (1.64% [wt/vol] aqueous, 4 ml/liter), dialyzed yeast extract (0.5 g/liter), and sterile phosphate buffer (KH₂PO₄·NaOH [pH 7.0], final concentration of 100 mM) was dispensed (20 ml per flask) into sterile 125-ml Erlenmeyer flasks containing 100 mg of cellulose (Avicel). The yeast extract was dialyzed to remove yeast cell walls, and the low-molecular-weight components were concentrated in a rotary evaporator before use. After inoculation, flasks were sealed with sterile Suba seals and flushed with filtered air (21% O₂) or nitrogen; O₂ was added to provide 5, 1, and <0.1% (vol/vol) O₂. The flasks were incubated at 30°C and shaken at 200 rpm. Gas phase O₂ levels were determined by using a Shimadzu GC-8A gas chromatograph fitted with a molecular sieve 5A column and a thermal conductivity detector. Carbon dioxide levels were determined daily as previously described, and each flask was then flushed with air or N₂ and the O₂ levels were adjusted; subsequent adjustments were made at 6- and 12-h intervals as required.

After 7 days, the contents of each flask were separated into two equal portions. The first portion was filtered through a 0.45-μm-pore-size membrane filter (Millipore Corp., Bedford, Mass.), and the dry weight of the residue was determined; the filtrate was used as an enzyme preparation to determine cellulose activity. The second portion was centrifuged, and the pellet was washed with water by suspension and centrifugation. It was then suspended in distilled water to the original volume, and a portion was assayed for protein by the method of Lowry et al. (12). The centrifugal supernatant was used to determine protein, organic matter (10), and total soluble carbohydrate by the phenol-sulfuric acid method (3). All experiments were done with four replicates.

(iii) Inocula. For inoculation, C. gelida was grown on mineral salts medium (11) with glucose at 2 g/liter and carboxymethyl cellulose at 1 g/liter. Azospirillum spp. and B. macerans were grown on N-free malate medium (2) supplemented with (NH₄)₂SO₄, 5 g/liter; sucrose, 4 g/liter; KH₂PO₄·NaOH (pH 7.0), 60 mM; and vitamins (thiamine, 10 mg/liter; biotin, 5 mg/liter; and PAB, 10 mg/liter). All cultures were grown for 48 to 72 h at 30°C and shaken at 200 rpm.

Measurement of cellulase activity. Culture filtrate (5 ml) was added to the reaction mixture (5 ml) consisting of 0.1 M KH₂PO₄·NaOH buffer (pH 7.0) containing 1% sodium azide and 100 mg of Avicel in 125-ml Erlenmeyer flasks. Zero-time samples (2 ml) were taken before the flasks were plugged and

TABLE 1. Production of ethylene and carbon dioxide by single and mixed cultures of C. gelida UQM 2480 and Azospirillum spp. or B. macerans grown on cellulose or straw in sand culture

<table>
<thead>
<tr>
<th>Cultures</th>
<th>Cellulose</th>
<th>Straw</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C₂H₄*</td>
<td>CO₂</td>
</tr>
<tr>
<td>Single</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. gelida</td>
<td>1</td>
<td>8.3</td>
</tr>
<tr>
<td>A. lipoferum 5A</td>
<td>1</td>
<td>3.1</td>
</tr>
<tr>
<td>A. brasilense Sp7</td>
<td>0</td>
<td>5.4</td>
</tr>
<tr>
<td>B. macerans 8514</td>
<td>5</td>
<td>3.9</td>
</tr>
<tr>
<td>B. macerans 111</td>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. gelida + A. lipoferum 5A</td>
<td>2.468</td>
<td>20.9</td>
</tr>
<tr>
<td>C. gelida + A. brasilense Sp7</td>
<td>1.311</td>
<td>26.4</td>
</tr>
<tr>
<td>C. gelida + B. macerans</td>
<td>2.781</td>
<td>19.8</td>
</tr>
<tr>
<td>8514</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. gelida + B. macerans 111</td>
<td>2.348</td>
<td>20.6</td>
</tr>
</tbody>
</table>

* Gas determinations were made over a period 72 to 96 h after inoculation. There were 4 replicates.

* Nanomoles of C₂H₄ produced per 24 h.

* Micromoles of CO₂ produced per 24 h.
incubated at 30°C with a shake rate of 200 rpm for 24 h. Final samples (2 ml) were then taken. The Avicel was removed by centrifugation, and a 1-ml sample of the supernatant was assayed for reducing sugar by the Somogyi-Nelson colorimetric determination read at 500 nm (22).

Plate counts of mixed cultures of Azospirillum spp. and C. gelida. A dilution series was prepared from the mixed sand cultures by adding 4.5 ml of 1/4-strength Ringer solution with 0.01% Tween 20, to each bottle to bring the total volume of liquid to 10 ml (10⁻⁸ dilution). The diluted sand cultures were mixed thoroughly, and a dilution series to 10⁻⁸ was prepared in 1/4-strength Ringer solution with 0.01% Tween 20. Plates of potato infusion medium (2) were prepared, and 1 ml of the appropriate dilution was added to 2 ml of a soft agar overlay (1% water agar containing 0.1 mg of Congo red per ml) at 60°C and poured as a thin, even layer over the dry surface of the plates. The Congo red was taken up by the A. brasilense colonies, which appeared bright pink (19); it did not affect the color or growth of the C. gelida colonies.

RESULTS

Acetylene reduction by mixed cultures of C. gelida and Azospirillum spp. or B. macerans with cellulose or straw as the carbon source. When mixed cultures of C. gelida and either of the Azospirillum species or B. macerans were grown on cellulose mixed through sterile sand maintained at 27.5% (wt/wt) moisture content, nitrogenase activity was high, whereas in the pure cultures of the diazotrophs it was negligible (Table 1). With straw as the substrate, the increased activity due to the presence of C. gelida was less marked because Azospirillum spp. (6), and to a lesser extent B. macerans, are capable of using components of straw other than cellulose as an energy source for nitrogenase activity. With the cellulose treatments, CO₂ production by mixed cultures was three- to fourfold higher than from single-strain cultures. These effects were not found in the straw treatments.

The time course of acetylene reduction and carbon dioxide production followed over 48 h in replicated mixed cultures, to which the C₂H₂ was introduced 8 days after inoculation, showed that the rate of C₂H₂ production increased over the first 24 h and then decreased (Fig. 1). Suggested explanations for this delay in reaching the maximum rate of C₂H₂ production include the time required for C₂H₂ to diffuse to the site of activity and possible derepression of nitrogenase as a result of nitrogen deprivation. Carbon dioxide concentrations rose sharply in the 2 h immediately after being flushed with air, an observation probably associated with residual dissolved CO₂ equilibrating with the gas phase. As a result of this study, C₂H₂ and CO₂ determinations were made routinely 24 h after the addition of C₂H₂. If the measured rate of nitrogenase activity in the 12- to 24-h period is representative of the continuing level of activity in these cultures, the 0- to 24-h value will underestimate the equilibrium rate by 25 to 28%.

The time course of cellulose and straw degradation and associated nitrogen fixation by mixed cultures were studied over a 30-day period; 12 sets of four replicate sand cultures for each treatment were assayed for C₂H₂ reduction and CO₂ production, each set at 12-day intervals. Mixed cultures of either A. brasilense or B. macerans with C. gelida gave similar patterns of C₂H₂ and CO₂ production, with cellulose as the substrate (Fig. 2a and c). Production of CO₂ commenced immediately and showed sharp fluctuations in the early part of the experiment, later moderating to a more stable pattern. Production of C₂H₂ was not detected until.

<table>
<thead>
<tr>
<th>Mixed culture</th>
<th>Total C₂H₂ (μmol)</th>
<th>Increase in N (μmol of N₂)</th>
<th>Total CO₂ (μmol)</th>
<th>Cells or straw lost (mg)</th>
<th>mg of N fixed/g of straw or cellulose lost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. brasilense + C. gelida</td>
<td>56</td>
<td>12.0</td>
<td>4.67</td>
<td>464</td>
<td>22.9</td>
</tr>
<tr>
<td>Cellulose</td>
<td>57</td>
<td>18.8</td>
<td>3.03</td>
<td>619</td>
<td>30.7</td>
</tr>
<tr>
<td>Straw</td>
<td>63</td>
<td>19.5</td>
<td>2.10</td>
<td>631</td>
<td>28.9</td>
</tr>
</tbody>
</table>

*Results are from four replicates.

Table 2. Nitrogen fixed, ethylene and CO₂ produced, and cellulose or straw utilized over a 30-day period by mixed cultures of C. gelida and A. brasilense or B. macerans inoculated into sand to provide a 27.5% (wt/wt) moisture content."
TABLE 3. C. gelida UQM 2480 grown on cellulose (100 mg) or straw (100 mg) under 21 or <0.1% O₂ for 14 days in shaken liquid culture (200 rpm) in 125-ml Erlenmeyer flasks (20 ml per flask)⁴

<table>
<thead>
<tr>
<th>Substrate and oxygen concen (%)</th>
<th>% Substrate recovered (± SE)</th>
<th>% Substrate utilized*</th>
<th>Total protein (mg/flask)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose 21</td>
<td>39.5 ± 1.6</td>
<td>52.7</td>
<td>15.6</td>
</tr>
<tr>
<td><0.1</td>
<td>86.3 ± 1.4</td>
<td>5.9</td>
<td>13.1</td>
</tr>
<tr>
<td>Sterile control</td>
<td>92.2 ± 0.9</td>
<td></td>
<td>11.2</td>
</tr>
<tr>
<td>Straw 21</td>
<td>52.0 ± 2.0</td>
<td>20.7</td>
<td>44.4</td>
</tr>
<tr>
<td><0.1</td>
<td>66.4 ± 1.1</td>
<td>6.3</td>
<td>36.3</td>
</tr>
<tr>
<td>Sterile control</td>
<td>72.7 ± 0.4</td>
<td></td>
<td>35.8</td>
</tr>
</tbody>
</table>

* Carbon dioxide was removed by flushing with air or N₂ at 6- or 12-h intervals as required. There were four replicates.

Effect of oxygen concentration on the breakdown of cellulose and straw by C. gelida. C. gelida grown on cellulose with a combined nitrogen source utilized 53% of the cellulose under aerobic conditions, compared with 6% under anaerobic conditions (i.e., <0.1% O₂) over a 14-day period (Table 3). The cells were bound firmly to the cellulose so that when the cellulose was harvested by filtration (8.0-µm-pore-size membrane) the bacteria were also removed. Hence, in subsequent experiments the cells and cellulose were removed together by filtration through 0.45-µm-pore-size membrane filters. The protein content of the cellulose pellet and the supernatant was determined separately; the total protein increased over the 14 days by 4.38 mg per flask under aerobic conditions compared with 1.88 mg per flask under anaerobic conditions. Straw was not so readily attacked, only 21% being utilized over 14 days under aerobic conditions and 6% under anaerobic conditions.

The effect of oxygen concentration on the utilization of cellulose was examined in more detail using 21, 5, 1, and <0.1% oxygen. In this experiment, the production of CO₂ was followed, and the culture medium was examined in an attempt to elucidate the nature of the metabolic products under different oxygen concentrations. The percentage of cellulose utilized (Table 4) increased slightly with decreasing oxygen concentration from 48.7% at 21% O₂ to 54% at 1% O₂, but at <0.1% O₂ only 6.2% of cellulose was utilized. Hence, the ability to metabolize cellulose was sustained at oxygen concentrations in the gas phase as low as 1%.

Cell dry weight was unchanged at 5% O₂, but below this level it decreased. CO₂ production was very oxygen-dependent, showing a decrease at all concentrations below 21% O₂.

The culture supernatant contained carbohydrate material, including reducing sugars. The differential between the glucose equivalents detected by the Somogyi-Nelson method for reducing sugar and the phenol-sulfuric acid method for total carbohydrate suggests that the supernatant may have contained more di- and trisaccharides than monosaccharides; excreted bacterial polysaccharides would also contribute to the difference. Determination of total organic matter in the supernatant showed a high value for the low oxygen treatments, 1 and <0.1%, indicating the presence of noncarbohydrate compounds, but it is difficult to evaluate this assay when the compounds are unknown; different compounds give different results in terms of milliequivalents.

TABLE 4. C. gelida UQM 2480 grown on cellulose at 30°C under various O₂ concentrations for 7 days in shaken (200 rpm) liquid culture in 125-ml Erlenmeyer flasks (20 ml per flask)⁴

<table>
<thead>
<tr>
<th>O₂ concn (%)</th>
<th>% Cellulose recovered ± SE</th>
<th>% Cellulose utilized*</th>
<th>Dry wt of cells (mg) ± SE</th>
<th>CO₂ produced in 7 days (µmol)</th>
<th>Organic matter in supernatant (meq of dichromate)</th>
<th>Carbohydrate in supernatant (µg/ml)†</th>
<th>Reducing sugar in supernatant (µg/ml)‡</th>
<th>Cellulase activity in supernatant †</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>42.5 ± 1.2</td>
<td>48.70</td>
<td>29.0 ± 1.1</td>
<td>2,204</td>
<td>1.65</td>
<td>56.6</td>
<td>11.25</td>
<td>82.0</td>
</tr>
<tr>
<td>5</td>
<td>40.6 ± 0.3</td>
<td>50.57</td>
<td>29.3 ± 0.7</td>
<td>1,582</td>
<td>1.75</td>
<td>55.7</td>
<td>9.75</td>
<td>41.3</td>
</tr>
<tr>
<td>1</td>
<td>37.2 ± 1.1</td>
<td>54.00</td>
<td>16.0 ± 0.5</td>
<td>585</td>
<td>3.82</td>
<td>43.1</td>
<td>6.0</td>
<td>7.8</td>
</tr>
<tr>
<td><0.1</td>
<td>84.9 ± 2.7</td>
<td>6.25</td>
<td>10.6 ± 0.9</td>
<td>27</td>
<td>2.45</td>
<td>21.6</td>
<td>6.0</td>
<td>1.75</td>
</tr>
<tr>
<td>Uninoculated controls</td>
<td>91.2 ± 1.1</td>
<td></td>
<td></td>
<td></td>
<td>2.46</td>
<td>24.4</td>
<td>7.5</td>
<td></td>
</tr>
</tbody>
</table>

* Carbon dioxide was removed by flushing with air or nitrogen, and the O₂ concentration was adjusted accordingly every 6 or 12 h as necessary. Results are from four replicates.

* Corrected for substrate losses in uninoculated controls.

* Measured by the phenol-sulfuric acid method as glucose equivalents.

* Measured as glucose equivalents.

* Measured as glucose equivalents per milliliter per 24 h.
of dichromate reduced per millimole (10). The presence of cellulose-degrading enzymes in the supernatant was evidenced by the increase in reducing sugar (Table 4), when the cell-free supernatant was incubated with cellulose; the level of these enzymes was dependent strongly on the O2 level in the gas phase during growth of the cultures.

Ratio of A. brasilense to C. gelida cells in mixed cultures.

The effects of varying the ratio of cells of the two partners in a mixed culture were investigated in sand cultures, with cellulose as the sole carbon source. Three ratios of A. brasilense to C. gelida (values of 0.0578, 0.005, and 0.0004) were established with approximately 10-fold differences between them.

There was a rapid increase in the A. brasilense populations in the first 3 days after inoculation (Fig. 3b), especially in the treatment with the lowest A. brasilense/C. gelida ratio (3 × 104 to 4.62 × 105). The numbers of C. gelida doubled in this period, with the net effect that the A. brasilense/C. gelida ratios changed to 0.088, 0.067, and 0.031. Thereafter the C. gelida populations showed a small decline in numbers, whereas the A. brasilense populations showed a small increase. By day 15, the A. brasilense/C. gelida ratios were 0.25, 0.38, and 0.34. Nitrogenase activity increased to a maximum on day 15 (Fig. 3a) concomitant with the increase in the A. brasilense populations (Fig. 3b). The failure to detect C2H4 reduction on day 3 in the treatment with the highest A. brasilense/C. gelida ratio was probably due to the initial population of C. gelida being too small (0.5 × 106 cells per ml, cf. 2.8 × 106 and 8 × 106) to provide the necessary carbohydrate for the A. brasilense population.

DISCUSSION

Mixed cultures of C. gelida plus A. brasilense or A. lipoferum, or C. gelida plus Bacillus macerans were shown to be capable of utilizing the products of the breakdown of cellulose to fix atmospheric nitrogen. When such mixed cultures were studied over 30 days, nitrogenase activity (C2H4 reduction) and CO2 production fluctuated considerably in the early stages. After 15 days the fluctuations decreased and both processes approached equilibrium rates which continued for a further 15 days. More than 20% of the cellulose was utilized (i.e., was not recovered by gravimetric determination), with 14.6 and 12.0 mg of N2 fixed per g of cellulose lost for the A. brasilense and B. macerans cultures, respectively. These values indicate that these systems are more efficient than those involving the aerobic *Trichoderma harzianum* and the anaerobic *Clostridium butyricum* (3.3 mg of N2 per g of cellulose [24]) and have similar or greater efficiency than mixed cultures of *Azotobacter* spp. and *Corynebacterium* sp. (6 to 14 mg of N2 per g of cellulose [9]).

Over the 30-day period, 28 to 30% of the straw was utilized, with efficiencies of 17.1 and 18.9 mg of N2 per g of straw lost for the A. brasilense and B. macerans mixed cultures, respectively. Again, these results compare favorably with published data for other mixtures of microorganisms growing on this substrate, e.g., 11.5 mg of N2 per g of straw with *Penicillium corylophilum* and *Clostridium butyricum* (14).

Although the mean of the four determined C2H4/N2 ratios (Table 2) was 4.1:1, very close to the theoretical 4:1 ratio when H2 evolution associated with nitrogenase function is considered, there was wide variation between the four contributory values. Furthermore, the C2H4 reduction rates are probably 25 to 28% lower than the true rate of nitrogenase activity. The straw values were consistently lower than those for the cellulose cultures, but no reasonable explanation can be provided for this observation. These data highlight the problem of using C2H4 reduction rates to estimate nitrogen fixation and support the increasing concern in the use of this technique to derive absolute values.

The oxygen concentration within the mixed cultures is critical. *Azospirillum* spp. require an oxygen concentration below 0.7% in the gas phase for nitrogen fixation to occur (16, 25). Nitrogen fixation by *Bacillus polymyxa* is also inhibited by oxygen concentrations above 1% (7). For this reason, the ability of C. gelida to degrade straw and cellulose at oxygen concentrations as low as 1% or less is important.
as this would enable cells of the two genera to form a close association. This would be important in a soil or compost situation where other organisms would compete for the products of cellulose decomposition. In our experimental situation, the cellulose-straw was mixed through coarse river sand maintained at a moisture content which provided many water-filled pores and therefore an abundance of micro-aerobic sites.

Azospirillum spp. would appear to have certain advantages over B. macerans as a partner for C. gelida on a substrate of straw in that Azospirillum can attack the hemicellulose component of the straw (6), thus initiating earlier nitrogen fixation and providing the C. gelida with starter nitrogen (Fig. 2b).

The initial ratio of cellulose-degrading organisms to nitrogen-fixing organisms does not appear to be important as the mixed cultures are capable of rapid adjustment to equilibriums of 1 Azospirillum to 3 Cellulomonas cells within 7 days.

Straw residues constitute a large reservoir of “difficult-to-degrade” carbon compounds with the potential to provide sufficient energy for agriculturally significant levels of nitrogen fixation (20). Although Azospirillum spp. are capable of metabolizing the hemicellulose xylan and using the degradation products for nitrogen fixation (6), the full availability of these hemicelluloses could be reduced by virtue of their complex structural association with cellulose and lignin residues. Many cellulolytic bacteria and fungi appear to function aerobically, whereas bacteria fixing nitrogen are restricted largely to conditions of low oxygen tension. The current results show that cellulolytic activity associated with C. gelida can stimulate greatly the nitrogen-fixing activities of both Azospirillum spp. and B. macerans and that cellulase can be produced under conditions of low oxygen tension. It remains to be shown whether this is due to a close physical relationship between the various bacteria, whether diffusion of cellulose breakdown products into a suitable “nitrogen-fixing zone” is involved, or whether exocellulase diffusion is important. The high levels of efficiency observed provide optimism that these organisms can be used to promote straw breakdown under field conditions and thus enhance the nitrogen status of the soil.

ACKNOWLEDGMENTS
We wish to thank Stephanie Gollasch and Shiranthi de Silva for their continuing enthusiasm and assistance during the program, Graham Turner for advice on the nitrogen determinations, and Bill Dudman for advice and help with the carbohydrate estimations.

LITERATURE CITED