Effect of Emulsan on Biodegradation of Crude Oil by Pure and Mixed Bacterial Cultures

JULIA M. FOGHT, DAVID L. GUTNICK, AND DONALD W. S. WESTLAKE

Department of Microbiology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9, and Department of Microbiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel

Received 13 July 1988/Accepted 11 October 1988

Crude oil was treated with purified emulsan, the heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population as well as nine different pure cultures isolated from various sources was tested for biodegradation of emulsan-treated and untreated crude oil. Biodegradation was measured both quantitatively and qualitatively. Recovery of 14CO$_2$ from mineralized 14C-labeled substrates yielded quantitative data on degradation of specific compounds, and capillary gas chromatography of residual unlabeled oil yielded qualitative data on a broad spectrum of crude oil components. Biodegradation of linear alkanes and other saturated hydrocarbons, both by pure cultures and by the mixed population, was reduced some 50 to 90% after emulsan pretreatment. In addition, degradation of aromatic compounds by the mixed population was reduced some 90% in emulsan-treated oil. In sharp contrast, aromatic biodegradation by pure cultures was either unaffected or slightly stimulated by emulsification of the oil.

Emulsan is the extracellular form of a polyanionic, cell-associated heteropolysaccharide produced by the oil-degrading bacterium Acinetobacter calcoaceticus RAG-1 (18, 31). The biopolymer stabilizes emulsions of hydrocarbons in water and has optimal activity when a mixture of aromatic and aliphatic components is present, such as in crude oil (17). The activity of the amphiphilic emulsifier is due primarily to its high affinity for the oil-water interface (29) and its ability to orient itself at the interface to form a hydrophilic film around the oil droplets (21, 29, 30).

Studies with bacteriophages, antibodies, and emulsan-deficient mutants have demonstrated the following. (i) Emulsan accumulates on the cell surface of RAG-1 before its release into the medium as the cells approach stationary phase (6). (ii) Cell-bound emulsan serves as a specific receptor for a RAG-1 phage, ap3 (10). Cell-free emulsan is no longer recognized by the phage, but phage receptor activity of emulsan can be reconstituted in vitro at the oil-water interface stabilized by emulsan (11). (iii) Mutants of RAG-1 defective in emulsan production no longer grow well on crude oil either in the presence of exogenously added emulsan or in the presence of the wild-type emulsan-producing cell (13). This indicates that the cell-bound form of emulsan is required for growth on crude oil. (iv) Cells of mutants defective in emulsan actually adhere more avidly to hydrocarbons than the wild-type cells, indicating that emulsan on the cell surface may mask a hydrophobic component(s) and thus modulate adherence (12). In this regard, emulsan has been shown to inhibit bacterial adhesion to hydrocarbons (16) and to desorb adherent bacterial cells from hydrophobic surfaces (15).

Emulsan has potential applications in the petroleum industry, including formation of heavy oil-water emulsions for viscosity reduction during pipeline transport and production of fuel oil-water emulsions for direct combustion with dewatering (7; M. E. Hayes, K. R. Hrebenar, P. L. Murphy, L. E. Futch, Jr., and J. F. Deal, U.S. patent 4,618,348, October 1986). The affinity of emulsan for the oil-water interface suggests that it might affect microbial degradation of emulsified oils. This has implications both for the stability of the oil emulsions during storage and transport and for their biodegradability should the emulsions accidentally be spilled in the environment.

This report describes the degradation of emulsan-coated oil by both pure and mixed oil-degrading cultures. Two techniques were used: (i) 14C-labeled aromatic and saturated hydrocarbons were incorporated in emulsan-treated oil to monitor mineralization (production of 14CO$_2$), and (ii) capillary gas chromatography (CGC) was used to analyze residual, unlabeled oil. The 14C mineralization technique quantitatively measures the degradation of specific substrates, and the CGC procedure qualitatively assesses the alteration of a spectrum of substrates.

MATERIALS AND METHODS

Bacterial isolates. The pure bacterial isolates used in these experiments and their hydrocarbon-degradative capabilities are listed in Table 1. Two isolates have been identified: A. calcoaceticus RAG-1 (9) and Pseudomonas strain HL7b (5a); the others are environmental isolates of known degradative capability but undetermined generic affiliation.

The mixed population used for degradative studies is an oil-degrading bacterial culture which has been maintained for several years in the laboratory by transfer with crude oil as the sole carbon source. Its source and enrichment were described by Fedorak and Westlake (5). The inoculum for each experiment was pregrown for 24 to 28 days in BNP medium (see below) plus Prudhoe Bay crude oil and contained little residual oil.

Media. The mineral medium used for emulsification of oil (BNP) consisted of 0.5 g of K$_2$HPO$_4$, 1.0 g of NH$_4$Cl, 2.0 g of Na$_2$SO$_4$, 2.0 g of KNO$_3$, 0.2 g of MgSO$_4$·7H$_2$O, and trace FeSO$_4$·7H$_2$O per liter of twice-distilled water. BNP medium was supplemented with 1 g of yeast extract (Difco Laboratories, Detroit, Mich.) and 1 g of proteose peptone 3 (Difco) per liter to make BYP medium, used for biodegradation studies. The medium was supplemented after emulsion treatment because emulsification occurs more readily in a mineral salts medium than in an organic medium (D. L. Gutnick, unpublished studies).
Prudhoe Bay crude oil was used for all experiments. A typical Prudhoe Bay crude oil has a specific gravity of 0.8883 g/ml, 23% (vol/vol) paraffins, and 25% (vol/vol) aromatics (1).

Preparation of emulsified oil medium for 14C-substrate mineralization studies. Purified emulsan was prepared as previously reported (20). The protein content was determined to be approximately 22% (wt/wt) (Bio-Rad Protein Assay; Bio-Rad Laboratories Chemical Division, Richmond, Calif.) with bovine gamma globulin (Bio-Rad) as a standard. Pure emulsan was suspended in a minimum volume of 95% ethanol, added to sterile boiling BNP medium to a final concentration of 50 μg/ml of medium, and boiled for 5 min. This treatment sterilized and dissolved the emulsan. The medium was cooled to room temperature before 14C-substrate-amended Prudhoe Bay crude oil was added to a final concentration of 1 μl of oil per ml of medium. The following 14C-substrates (Amersham Corp., Arlington Heights, Ill.) were used individually: [9,14C]phenanthrene, [9,14C]anthracene, [1,14C]carbazole, n-[1-14C]hexadecane, [1-14C]pristane, and [1,14C]hexadecanoic acid. The nanomolar amounts of 14C-substrate added (approximately 1,000 dpm/μl) did not significantly alter the crude oil composition. The labeled oil was emulsified by agitating the medium on a reciprocal shaker at 180 strokes per min for 3 h. After emulsification, a sterile stock solution of yeast extract and proteose peptone 3 was added to make BYP medium. For pure culture studies, 10 ml of the emulsified 14C-labeled oil medium was dispensed into 125-ml serum bottles, inoculated with 0.1 ml of culture pregrown in BYP medium, and sealed with a sterile serum stopper. Each replicate test bottle then consisted of 10 μl of 14C-substrate-amended oil plus 500 μg of emulsan in 10.1 ml of inoculated BYP medium. Unemulsified control bottles were prepared by dispensing 10 μl of 14C-substrate-amended oil into 10 ml of sterile BYP medium and inoculating the mixture with 0.1 ml of culture pregrown in BYP medium. Unincubated control bottles were prepared, both with and without emulsan, to assess sterility of the media and to account for any volatility of the 14C-substrates. Sterility of controls and purity of cultures were also assessed by streaking on BYP medium solidified with 1.5% agar (Difco). All bottles were incubated at 28°C with centrifugal shaking at 100 rpm.

For radiometric studies with the mixed population, media were prepared as outlined above. Ten-ml samples of medium were dispensed to 158-ml serum bottles, which were then inoculated with 1.0 ml of mixed population culture. Unemulsified and sterile controls were included, and all bottles were incubated at 28°C with centrifugal shaking at 100 rpm.

Measurement of 14C-substrate mineralization. At intervals, sealed replicate bottles were acidified to pH <2 with 4 N H2SO4 and flushed with nitrogen gas to recover 14CO2 by using the trapping apparatus described by Fedorak et al. (2). Each vial contained 10 ml of ACS scintillation fluid (Amersham Corp.) plus 1 ml of Carbo-Sorb II (Packard Instrument Co., Inc., Downers Grove, Ill.) CO2 trapping agent. The disintegrations per minute (dpm) recovered as 14CO2 were adjusted for background dpm and calculated as a percentage of the added label.

Gas chromatography of residual oil. For qualitative CGC analysis of mixed-population oil degradation, media were prepared with and without emulsan as outlined above but omitting the 14C-substrates. Sterile emulsified oil medium (200 ml) was dispensed to 500-ml Erlenmeyer flasks and inoculated with 20 ml of mixed oil-degrading culture. Unemulsified controls inoculated with mixed population, plus uninoculated controls with and without emulsan, were included. Replicate flasks were fitted with foam plugs and incubated at 28°C with centrifugal shaking at 100 rpm for 3, 7, 14, or 28 days. Cultures for CGC analysis were acidified to pH <2 with 50% HCl, and the residual oil was collected by extraction with methylene chloride. The extracted, concentrated residual oil was separated into saturated and aromatic fractions by liquid column chromatography and analyzed by using the CGC columns and conditions described previously (5). In addition to saturated and aromatic compound detection by flame ionization, a sulfur-specific flame photometric detector allowed analysis of sulfur heterocycles in the aromatic fraction (4).

RESULTS

14C-substrate mineralization by pure cultures. All mineralization data have been corrected for background dpm. The dpm flushed from sterile controls were consistently less than 1% of the added label dpm, indicating that volatility of the labeled substrates did not contribute significantly to the recovered dpm; therefore, culture dpm have not been corrected for volatility. All cultures were found to be pure after incubation with the 14C-substrate-amended oil.

The substrates n-[1-14C]hexadecane and [1-14C]pristane represent, respectively, the saturated straight-chain alkanes and branched-chain alkanes (isoprenoids) found in crude oil. The 1-14C label position on these substrates requires that only the terminal carbon(s) be metabolized for 14CO2 to be produced.

Mineralization of both n-[1-14C]hexadecane and [1-14C]pristane in crude oil by the gram-positive isolate SE was significantly reduced by pretreatment of the oil with emulsan (Fig. 1). Hexadecane mineralization was reduced approximately 85% and pristane mineralization was reduced approximately 70% after 140 h of incubation. Extended incubation of emulsan-treated cultures to 14 days resulted in no change in pattern of 14CO2 release. Similarly, mineralization of
n-[1-14C]hexadecane in emulsan-treated oil by the gram-
negative isolate EA was reduced approximately 50% (Fig. 2). This isolate does not degrade pristane sufficiently for
emulsan to have a significant effect on mineralization.

Mineralization of n-[1-14C]hexadecane and [1-14C]pristane
by four other saturate-degrading isolates was determined by
analyzing replicate bottles after 7 and 14 days of incubation.
Results after 14 days of incubation (which were only slightly
higher than the 7-day results) are presented in Table 2.
Pretreatment of the labeled oil with emulsan resulted in
inhibition of hexadecane and pristane mineralization. This
inhibition was observed for all six saturate-degrading pure
cultures tested, regardless of their origin, their overall satu-
rate degradative capability, and their Gram stain reaction.

The effect of emulsan on mineralization of aromatic and
nitrogen heterocyclic compounds was studied by using phen-
anthrene and carbazole, respectively. Production of 14CO2
from [U-14C]carbazole requires only side-ring metabolism,
whereas extensive degradation is required to produce 14CO2
from the internally labeled [9-14C]phenanthrene. Mineraliza-
tion of [9-14C]phenanthrene (Fig. 3) by isolate HL7b was
unaffected by emulsan treatment, whereas mineralization by
isolate VT4 was slightly stimulated (a statistically significant
difference at the 95% confidence level as determined by
Duncan’s multiple-range test). Extended incubation did not
change the 14CO2 release patterns of either HL7b or VT4.
Similar stimulation was observed with the gram-positive
isolate 1B-11, with which 4.6 ± 0.38% of added [9-14C]
phenanthrene was recovered as 14CO2 from unemulsified oil
and 8.8 ± 0.31% was recovered from emulsan-treated oil
after 14 days of incubation (mean ± 1 standard deviation;
n = 3). A statistically significant stimulation of [U-14C]
carbazole mineralization by isolates HL7b and VT4 was
observed with emulsan pretreatment (Fig. 4).

14C-substrate mineralization by mixed population. Mineraliza-
tion of 14C-substrates by the mixed oil-degrading popu-
lation was determined by analyzing replicate bottles after 7
and 14 days of incubation. Results after 14 days of incuba-
tion, which once again were only slightly higher than those
after 7 days, are shown in Table 3. Mineralization of all
saturated and aromatic substrates was inhibited by >90% except
hexadecanoic acid degradation, which was inhibited by
30%. These results contrast with the pure-culture data, which
showed little or no effect of emulsan on aromatic
degradation and much less inhibition of saturate mineraliza-
tion.

A pure culture of isolate SE was used to test the observa-
tion that hexadecanoic acid degradation was not as severely
inhibited by emulsan treatment as degradation of the corre-
sponding n-alkane. After 14 days of incubation, an unemul-
sified control culture of SE released 50.0 ± 1.7% of [1-
14C]hexadecanoic acid as 14CO2, whereas the corresponding
emulsan-treated culture released 39.2 ± 0.36% of the label as
14CO2 (mean ± 1 standard deviation; n = 3). This represents
an inhibition of 22%, while n-[1-14C]hexadecane degradation
was inhibited by >85% (Fig. 1).

CGC analysis of oil incubated with mixed population. It is
possible that results obtained from mineralization of specific
14C-substrates are not representative of the degradation of
whole crude oil. Therefore, gross changes in residual oil
fractions were assessed by CGC, which is less sensitive and
less specific than radiometric studies but spans a wider range
of substrates.

Analyses of residual crude oil incubated with the mixed
population showed that emulsan pretreatment had an inhibi-
tory effect on degradation of a variety of saturated, aro-

![Graph](https://via.placeholder.com/150)

FIG. 2. Mineralization of n-[1-14C]hexadecane in crude oil by
isolate EA without (control) and with emulsan pretreatment. Each
point is the mean of three replicates; error bars represent 1 standard
deviation.

![Graph](https://via.placeholder.com/150)

FIG. 1. Mineralization of n-[1-14C]hexadecane and [1-14C]
pristane in crude oil by isolate SE without (controls) and with
emulsan pretreatment. Each point is the mean of three replicates; error
bars represent 1 standard deviation.

TABLE 2. Mineralization of n-[1-14C]hexadecane and [1-14C]pristane in crude oil after 14 days of incubation, without (controls) or with emulsan pretreatment

<table>
<thead>
<tr>
<th>Isolate</th>
<th>n-[1-14C]hexadecane</th>
<th>[1-14C]pristane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control + Emulsan</td>
<td>Control + Emulsan</td>
</tr>
<tr>
<td>ED</td>
<td>35.2 ± 1.4</td>
<td>46.5 ± 3.7</td>
</tr>
<tr>
<td>C1-Y</td>
<td>38.5 ± 1.9</td>
<td>60.1± 14.6</td>
</tr>
<tr>
<td>SM</td>
<td>37.3 ± 1.8</td>
<td>3.2 ± 0.55</td>
</tr>
<tr>
<td>RAG-1</td>
<td>36.8 ± 1.7</td>
<td>2.3 ± 0.49</td>
</tr>
</tbody>
</table>

* Emulsan (in this experiment only) was present at a concentration of 20 µg/ml of medium.

b Means ± 1 standard deviation; n = 3.
c Single sample assayed.

d A. calcoaceticus RAG-1.
matics, and sulfur heterocyclic components of oil (Fig. 5, and Table 4). Inhibition of aromatic and sulfur heterocyclic degradation was overcome to a small degree by extending incubation to 28 days (Table 4), but saturate degradation inhibition was not relieved.

DISCUSSION

The results presented in this article indicate that pretreatment of oil with pure extracellular emulsan had both inhibitory and stimulatory effects on oil biodegradation. For example, the presence of emulsan at the oil-water interface (i) severely inhibited saturated alkane mineralization normally catalyzed both by pure cultures and by a mixed oil-degrading population, (ii) had little or even some stimulatory effect on aromatic (phenanthrene and carbazole) mineralization by pure cultures of aromatic degraders, and yet (iii) inhibited aromatic mineralization in crude oil by the mixed population.

The inhibitory effects of emulsan on saturate mineralization, particularly in the case of the pure cultures, may be attributable to a requirement for direct physical interaction of the cells with the hydrophobic substrate in order to initiate degradation (as has been found for *A. calcoaceticus* RAG-1 [19]). Previous observations have shown that emulsan prevents the adherence of various bacteria either to hydrocarbons or to hydrophobic biological surfaces such as buccal epithelial cells (15). It should be noted that different alkane-oxidizing strains may vary in their dependences on adherence to oil to effect degradation. In these cases hydrocarbon internalization is reported to proceed via "pseudosolubilization" through the action of specific microbial surfactants which presumably lower interfacial tension sufficiently to allow for microemulsion formation and hydrocarbon uptake (14). Previous coating of the oil with emulsan may prevent access of such surfactant(s), thus causing inhibition. Alternatively, emulsan may mask subcellular structures, such as the hydrophobic sites described by Pines and Gutnick (12), which could mediate adherence to hydrophobic substrates. The observation that degradation of hexadecanoic acid was less affected than degradation of hexadecane suggests the possibility that emulsan-mediated inhibition of degradation is reduced when the substrate has an amphiphatic nature.

This inhibition does not appear to result from toxicity of emulsan-treated oil, because limited growth of pure cultures and the mixed population was observed in the presence of emulsan-treated oil. (Presumably this growth occurred at the expense of the low levels of yeast extract and protease peptone present in BYP medium, since oil utilization was inhibited.) Moreover, the degree of mineralization by the same isolate differed for similar substrates. For example, there was a fourfold difference between mineralization of hexadecane and mineralization of hexadecanoic acid by

![FIG. 3. Mineralization of [9-14C]phenanthrene in crude oil by isolates HL7b and VT4 without (controls) and with emulsan pretreatment. Each point is the mean of three replicates; error bars represent 1 standard deviation.](http://aem.asm.org/)

![FIG. 4. Mineralization of [U-14C]carbazole in crude oil by isolates HL7b and VT4 without (controls) and with emulsan pretreatment. Each point is the mean of three replicates; error bars represent 1 standard deviation.](http://aem.asm.org/)

TABLE 3. Mineralization of 14C-labeled substrates in crude oil without (control) or with emulsan pretreatment, after 14 days of incubation with mixed oil-degrading population

<table>
<thead>
<tr>
<th>Substrate</th>
<th>% Label recovered as 14CO2<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>+ Emulsan</td>
</tr>
<tr>
<td>n-[14C]hexadecane</td>
<td>56.4 ± 1.6</td>
</tr>
<tr>
<td>[1-14C]pristane</td>
<td>52.8</td>
</tr>
<tr>
<td>[1-14C]hexadecanoic acid</td>
<td>61.6</td>
</tr>
<tr>
<td>[9-14C]phenanthrene</td>
<td>72.3 ± 3.6</td>
</tr>
<tr>
<td>[9-14C]anthracene</td>
<td>27.2</td>
</tr>
<tr>
<td>[U-14C]carbazole</td>
<td>23.6</td>
</tr>
</tbody>
</table>

^a Where more than one sample was assayed, the mean ± 1 standard deviation (*n* = 3) is given.
FIG. 5. Representative chromatograms of fractionated residual oil with or without emulsan treatment, after 14 days of incubation with mixed oil-degrading population. (A) Profiles of saturate fraction. nC16, Hexadecane; pr, pristane; ph, phytane; chr, chrysene (marker). (B) Profiles of aromatic fraction. Peaks: 1, region containing C2-naphthalenes; 2, region containing C3-naphthalenes; 3, phenanthrene; 4, anthracene; chr, chrysene (marker). (C) Profiles of sulfur heterocycles. Peaks: A, C2-benzo[b]thiophene; B and C, C3-benzo[b]thiophenes; D, dibenzothiophene; E, region containing C2-dibenzothiophenes; F, region containing C3-dibenzothiophenes. (C, denotes i alkyl carbons substituted on parent aromatic compound). For detailed peak identification, see references 3 and 4.
TABLE 4. Summary of CGCs of residual oil without (controls) or with emulsan pretreatment, after incubation with mixed population*

<table>
<thead>
<tr>
<th>Incubation time (days)</th>
<th>Saturatesb</th>
<th>Aromaticsb</th>
<th>Sulfur heterocyclesd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Emulsan</td>
<td>Control</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>–</td>
<td>±</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>±</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>28</td>
<td>+</td>
<td>+</td>
<td>++</td>
</tr>
</tbody>
</table>

* For representative chromatograms (14-day cultures), see Fig. 5.
b, c, d. No degradation of saturates observed; +, rapid degradation of n-alkanes and slower degradation of isoprenoids; ++, rapid degradation of both n-alkanes and isoprenoids.

EFFECT OF EMULSAN ON CRUDE OIL BIODEGRADATION

(Acinetobacter calcoaceticus)

reported differences in growth and hydrocarbon degradation by oil-degrading strains examined in pure culture and those examined in reconstituted mixtures. Among the effects observed were competition for common substrates, enhanced die-off in mixed culture, and stabilization of populations in stationary phase. In that study, different components of the oil were found to be utilized sequentially. Sequential utilization by mixed cultures of oil-degrading microorganisms has also been reported by Walker and Colwell (25). It is possible that emulsan pretreatment could have inhibited an essential stage in the mineralization sequence. Whatever the mechanism, simple extrapolation of pure culture data to a mixed population is not valid.

Results from the mixed oil-degrading population suggest that industrial emulsan-stabilized oil-water emulsions should be recalcitrant to biodegradation. This would be beneficial in terms of transport and storage of such emulsions but suggests that emulsified oil spilled in the environment might be degraded more slowly than the original oil. It would be interesting to compare mixed enrichment populations isolated on emulsan- or other emulsifier-treated oils with those isolated on untreated oils to see whether specialized populations developed.

ACKNOWLEDGMENTS

We are grateful to Cecilia Anders for fine technical assistance and to Rina Avigad in the laboratory of D. L. G. for preparing the emulsan.

This work was supported in part by a Natural Sciences and Engineering Research Council Canada operating grant to D. W. S. W.

LITERATURE CITED

