Evaluation of Alternariol and Alternariol Methyl Ether for Mutagenic Activity in Salmonella typhimurium

VALERIE M. DAVIS* and MICHAEL E. STACK
Division of Molecular Biological Research and Evaluation and Division of Contaminants Chemistry, U.S. Food and Drug Administration, Washington, D.C. 20204

Received 5 April 1994/Accepted 15 July 1994

Alternaria and alternariol methyl ether were tested in the Ames Salmonella typhimurium assay, and both were shown, with and without metabolic activation, to be nonmutagenic to strains TA98 and TA100. The finding of other investigators that alternariol methyl ether is weakly mutagenic to TA98 without metabolic activation could have resulted from the presence of a small amount of one of the highly mutagenic alternariol metabolites.

Alternaria species are widely distributed plant pathogens and decay organisms of mature fruits and vegetables. In a survey carried out by Bruce et al. (2), Alternaria propagules were found in 184 of 230 test samples of grains from the United States. These molds also produce a large variety of toxic and nontoxic secondary metabolites (5, 6), including the dibenzo-pyrones alternariol (AOH) (3), alternariol methyl ether (AME) (3), and altenuene (1); the perylene derivatives alternariol I, II, and III (9) and stemyphyltoxin III (4, 8); and a tetradic acid (2), tenuazic acid (6). The structures of AME, AOH, and alteteroxin III are shown in Fig. 1.

Our laboratories have previously shown that altertoxins I, II, and III and stemyphyltoxin III are mutagenic in the Ames Salmonella typhimurium assay using strains TA98 and TA100 in both the absence and the presence of a liver microsomal fraction (S9) for metabolic activation (4, 9). It has also been reported that AME is weakly mutagenic to S. typhimurium TA98 without metabolic activation whereas tenuazic acid is not mutagenic to the same strain (7). In the present study, highly purified AOH and AME were tested for mutagenic activity by using S. typhimurium TA98 and TA100 both with and without S9 to determine whether these dibenzo-pyrones are indeed mutagenic.

AOH and AME were obtained from F. S. Chu of the University of Wisconsin Food Research Institute, Madison, Wis. (3), and were repurified by liquid column chromatography on Silica Gel 60 (E. Merck AG, Darmstadt, Germany). AME was eluted from the column with methylene chloride, and AOH was eluted with methylene chloride-acetone (4:1). AME and AOH were tested for purity by thin-layer chromatography on Silica Gel 60 plates. Separate 25-μg/ml solutions of AME, AOH, stemyphyltoxin III, and altertoxins I, II, and III were prepared in methylene chloride. A 10-μl portion of each solution was spotted on the plate. After development with benzene-methanol-acetic acid (90:5:5) and drying at room temperature, AME was detected at its Rf of 0.94 by exposing the plate to NH3 fumes, which also caused altertoxin III to become violet. The identities of AME, AOH, and altertoxin III were confirmed by mass spectrometry.

S. typhimurium TA98 and TA100 were used for identification of reverse mutations from histidine dependence by the plate incorporation method of Ames et al. (1). To 2 ml of molten top agar were added 0.1 ml of bacteria from an overnight culture, 0.05 ml of the test substance dissolved in dimethyl sulfoxide, and 0.5 ml of the S9 mix, when used. The base agar contained 0.5% glucose instead of the 2% glucose used by Bruce et al. (2). The S9 was prepared from the livers of Aroclor 1254-induced male Sprague-Dawley rats according to the procedure described by Ames et al. (1). Compounds were dissolved in dimethyl sulfoxide immediately before plating, and the assay was completed as rapidly as possible because of the instability of the altertoxins. For each dose level, three plates were used with concurrent positive and solvent controls. The plates were incubated for 48 h at 37°C, and all colonies were counted manually. A revertant count equal to twice the background count was considered positive. Bacterial cultures

![Alternariol Methyl Ether](image1)

**FIG. 1.** Structures of AME, AOH, and alteteroxin III.

**TABLE 1.** Number of His" revertants in positive and solvent controls in the S. typhimurium mutagenicity assay

<table>
<thead>
<tr>
<th>Strain</th>
<th>Chemical Description</th>
<th>Dose of S9 (μg/plate)</th>
<th>No. of His&quot; revertants/plate</th>
<th>Positive control</th>
<th>Solvent control</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA98</td>
<td>2-Fluorenylacetamide</td>
<td>10</td>
<td>+692</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>TA100</td>
<td>4-Nitro-o-phenylenediamine</td>
<td>5.0</td>
<td>−703</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>TA100</td>
<td>2-Aminoantracene</td>
<td>0.5</td>
<td>+841</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>TA1535</td>
<td>Nitrofurantoin</td>
<td>0.5</td>
<td>−812</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>TA1535</td>
<td>2-Aminoantracene</td>
<td>2.5</td>
<td>+72</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>TA1535</td>
<td>Sodium azide</td>
<td>1.25</td>
<td>−68</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>TA1537</td>
<td>2-Aminoantracene</td>
<td>2.5</td>
<td>+88</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TA1537</td>
<td>4-Nitro-o-phenylenediamine</td>
<td>10</td>
<td>−96</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

* Corresponding author. Mailing address: Division of Molecular Biological Research and Evaluation (HFS-236), U.S. Food and Drug Administration, 200 C St., S.W., Washington, DC 20204. Phone: (202) 205-4497. Fax: (202) 205-4758.
were routinely tested for viability as well as sensitivity to ampicillin and crystal violet.

Both AME and AOH were shown to be free from contamination with the altertoxins, as determined by thin-layer chromatography. The results of the mutagenicity assays of AME and AOH are shown in Fig. 2. Responses for the concurrent positive controls are shown in Table I. AME and AOH were tested at doses of 50 to 750 μg per plate with S. typhimurium TA98 and TA100, both with and without metabolic activation. No positive increases in revertants over the spontaneous levels were observed. AME and AOH were also tested with strains TA1537 and TA1538 at the same doses, and no positive responses were induced (data not shown). As expected, altertoxin III, at doses of 0.6 and 1.8 μg per plate, induced a mutagenic response with TA98 (Fig. 3). A mutagenic response was also obtained when AME (Fig. 3) and AOH were tested in the presence of very small amounts of altertoxin III, 0.6 and 1.8 μg.

We conclude from these experiments that AME and AOH are not mutagenic. The previous report by Scott and Stoltz (7) of marginal mutagenicity of AME in the S. typhimurium test could have resulted from the presence of a very small amount of one of the altertoxins in the AME that they tested.

**REFERENCES**


