Tellurite Resistance and Reduction by Obligately Aerobic Photosynthetic Bacteria

VLADIMIR YURKOV,† JOCELYNE JAPPE, AND ANDRÉ VERMEGLIO*

Département d’Ecophysiologie Végétale et Microbiologie, Laboratoire de BioEnergétique Cellulaire, Centre d’Etudes Nucleaires de Cadarache, 13108 St. Paul lez Durance, France

Received 15 April 1996/Accepted 13 August 1996

Seven species of obligately aerobic photosynthetic bacteria of the genera Erythromicrobium, Erythrobacter, and Roseococcus demonstrated high-level resistance to tellurite and accumulation of metallic tellurium crystals. High-level resistance without tellurite reduction was observed for Roseococcus thiosulfatophilus and Erythromicrobium ezovicum grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance.

Tellurium compounds can be found in high concentrations in land and water near sites of waste discharge of industrial manufacturing processes (5). Potassium tellurite (K₂TeO₃) is toxic to many microorganisms at concentrations as low as 1 μg/ml (13, 14, 19). Intrinsic low-level resistance to TeO₃²⁻ has been reported for a few gram-positive organisms (e.g., Corynebacterium diphtheriae, Streptococcus faecalis) been reported for a few gram-positive organisms (e.g., Corynebacterium diphtheriae, Streptococcus faecalis, and some Staphylococcus aureus strains), but little is known about the mechanisms responsible for this resistance (14). Resistance to tellurite of some gram-negative bacteria is associated with the presence of plasmids and has been studied extensively (2, 5, 13, 16, 18–20).

A constitutive high-level resistance (HLR) to rare earth oxides and oxyanions at concentrations approaching 1,000 μg/ml was recently described for photosynthetic purple non-sulfur bacteria of the alpha subclass of Proteobacteria (9, 10). Obligate aerobic anoxygenic phototrophs, a new physiological group of the same subclass (4, 6, 12, 21, 28), produce bacteriochlorophyll a but are unable to grow photosynthetically under anaerobic conditions.

In this study we describe HLR to tellurite among freshwater species of obligate aerobic phototrophs and their ability to reduce TeO₃²⁻ to metallic Te in very large amounts.

Seven species, Erythrobacter litoralis T4, Roseococcus thiosulfatophilus RB3, Erythromicrobium ramosum E5 (28), Erythromicrobium sibiricum RB16-17, Erythromicrobium ursincola KR99, Erythromicrobium ezovicum E1, and Erythromicrobium hydrologeticum E4 (23–27) (personal collection of Vladimir Yurkov), have been studied.

Figure 1 shows examples of growth of Erythromicrobium ezovicum (A), Erythromicrobium ramosum (B), Erythrobacter litoralis (C) and Roseococcus thiosulfatophilus (D) supplemented with different K₂TeO₃ concentrations in rich organic (RO) medium (6, 28). With the exception of the highly tellurite-sensitive Erythromicrobium ezovicum, for which no growth occurred at 5.0 μg of K₂TeO₃ per ml, six other species presented HLR (with MICs between 500 and 2,000 μg of K₂TeO₃ per ml) in RO medium or minimal salts (MS) medium containing yeast extract (3) (Table 1). However, these MICs depend upon the carbon source. This is summarized in Table 1 for the different species studied, grown in MS medium in the presence of trace elements (6), supplemented with different concentrations of K₂TeO₃.

TABLE 1. Reduction of K₂TeO₃ by different species of obligate aerobic phototrophs depending on organic carbon source

<table>
<thead>
<tr>
<th>C source</th>
<th>Erythrobacter litoralis</th>
<th>Erythromicrobium hydrologeticum</th>
<th>Erythromicrobium ursincola</th>
<th>Erythromicrobium ramosum</th>
<th>Erythromicrobium sibiricum</th>
<th>Roseococcus thiosulfatophilus</th>
<th>Erythromicrobium ursincola</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>+</td>
<td>500 1,200</td>
<td>+</td>
<td>500 1,000</td>
<td>+</td>
<td>500 1,200</td>
<td>+</td>
</tr>
<tr>
<td>Yeast</td>
<td>+</td>
<td>250 1,200</td>
<td>+</td>
<td>500 2,000</td>
<td>+</td>
<td>250 1,500</td>
<td>+</td>
</tr>
<tr>
<td>l-Glutamine</td>
<td>+</td>
<td>500 1,000</td>
<td>+</td>
<td>750 1,200</td>
<td>+</td>
<td>750 1,200</td>
<td>+</td>
</tr>
<tr>
<td>Succinate</td>
<td>+</td>
<td>250 1,200</td>
<td>+</td>
<td>750 1,200</td>
<td>+</td>
<td>750 1,200</td>
<td>+</td>
</tr>
<tr>
<td>Malate</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>750 1,200</td>
<td>+</td>
<td>750 1,200</td>
<td>+</td>
</tr>
<tr>
<td>Tartrate</td>
<td>–</td>
<td>+</td>
<td>±</td>
<td>NR 5</td>
<td>±</td>
<td>NR 5</td>
<td>+</td>
</tr>
<tr>
<td>Acetate</td>
<td>+</td>
<td>1,000 1,200</td>
<td>±</td>
<td>1,000 2,500</td>
<td>±</td>
<td>1,000 2,300</td>
<td>±</td>
</tr>
<tr>
<td>Ethanol</td>
<td>±</td>
<td>250 750</td>
<td>+</td>
<td>250 2,700</td>
<td>+</td>
<td>250 1,000</td>
<td>+</td>
</tr>
</tbody>
</table>

* The bacteria were grown on RO medium, MS medium with yeast extract, or MS medium with the indicated organic carbon source.

† Corresponding author. Phone: 33 04 42 25 46 30. Fax: 33 04 42 25 47 01. Electronic mail address: vermeglio@DRA.CAD.CEA.FR.

‡ Present address: Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.

Copyright © 1996, American Society for Microbiology

4195
carbon sources (1 g/liter). The highest level of resistance to tellurite (MICs between 2,300 and 2,700 μg of K₂TeO₃ per ml) was observed for cells of *Erythromicrobium hydrolyticum*, *Erythromicrobium ursincola*, or *Erythromicrobium ramosum* grown in the presence of acetate. This is 2 to 3 times higher than the highest MICs of tellurite (800 and 1,200 μg/ml) described by Moore and Kaplan for *Rhodobacter capsulatus* and *Rhodobacter sphaeroides* (9, 10).

In most cases, a black coloration appears during the growth in the presence of tellurite (Fig. 1). This is due to the reduction of tellurite in metallic tellurium with its intracellular accumulation (8, 9, 17). Intracellular deposits appear as electron-dense crystals in electron microscopy (Fig. 2) and have been shown to consist of elemental tellurium in several strains of bacteria (1, 7–10, 15, 17). Excluding *Roseococcus thiosulfatophilus* grown in the presence of L-glutamine, succinate, malate, tartrate, or acetate, and *Erythromicrobium exovicum* grown with acetate, all species examined in the present work were able to reduce TeO₃²⁻ to elemental Te in combination with HLR to this compound (Table 1 and Fig. 1). Most of the tellurite was biotransformed to metallic Te in 24 h, with the exception of *Roseococcus thiosulfatophilus* for which the tellurite reduction occurred only after 72 to 96 h of growth. The amount of reduced tellurite depended upon the species and the carbon source (Table 1). Transmission electron microscopy pictures, obtained as previously described (11) show very abundant and large black crystals which sometimes occupied about 20 to 30% of the cell volume (see, as an example, the case of *Erythromicrobium ursincola* in Fig. 2A). The size and total amount of the Te crystals in the species studied in this study are usually greater than those observed in *Escherichia coli*, or *Pseudomonas* or *Rhodobacter* species. The only exception was *Roseococcus thiosulfatophilus*, which formed and accumulated relatively small deposits (Fig. 2B).

The strong oxidant property of tellurite confers its toxic character for microorganisms (13). In most cases analyzed in this study, HLR to tellurite is correlated to its reduction into Te. However, HLR without tellurite reduction was observed for *Roseococcus thiosulfatophilus* grown with l-glutamine, succinate, malate, tartrate, or acetate, and *Erythromicrobium exovicum* grown with acetate as the organic carbon source. These results imply that tellurite reduction is not essential to confer tellurite resistance and some other mechanisms, such as continuous tellurite efflux or tellurite complexing or methylation could play an important role in the resistance character.

Previous work has demonstrated that the extent of tellurite reduction in *Rhodobacter sphaeroides* was inversely related to the oxidation state of the carbon source present in the growth medium (9, 10). In addition to its detoxification effect, reduction of metal oxide could be a way to dispose of excess electrons by the oxidation of NADH, FADH₂, or quinones and, therefore, for maintenance of an optimal redox poise in vivo (9, 10). A clear correlation between the tellurite reduction and the oxidation state of the carbon source is not evident in the case of obligate aerobic photosynthetic bacteria (Table 1) with the exception of *Roseococcus thiosulfatophilus*. Indeed this species can reduce Te(IV) to Te(0) in MS medium with yeast extract and RO medium but not in MS medium containing l-glutamine, succinate, malate, tartrate, or acetate as the sole organic carbon source. These results are consistent with the idea that during growth in RO medium *Roseococcus thiosulfatophilus* cells presented with an excess of reducing power, and electron carriers could be oxidized by giving electrons to tellurite, thus equilibrating the redox poise in vivo.

Industrial activity has an enormous influence on the geochemical migration processes of some toxic heavy metals by their dispersion in water, soil, and atmosphere, or their concentration in specific areas. These processes contribute to serious pollution problems (22). The reduction of soluble Te(IV) to solid Te(0) could be an important mechanism for the removal of this element from polluted places. In this context, the...
development of microbiological methods for environmental cleaning systems for tellurium oxides is of interest. Obligate aerobic photosynthetic bacteria, being able to transform Te(IV) to Te(0) in very high concentrations, are promising candidates for such a process.

This work was supported by the Commissariat à l’Energie Atomique.

We thank Tom Beatty (UBC, Vancouver, British Columbia, Canada) for suggestions. V. Yurkov thanks Natalie Yurkova and Cécile Avazéri for helpful discussions.

REFERENCES