The Methanogenic Archaeon *Methanosarcina thermophila* TM-1
Possesses a High-Affinity Glycine Betaine Transporter
Involved in Osmotic Adaptation

LITA M. PROCTOR,† ROGER LAI,‡ AND ROBERT P. GUNSALUS*

Department of Microbiology and Molecular Genetics and Molecular Biology Institute,
University of California at Los Angeles, Los Angeles, California 90095-1489

Received 19 September 1996/Accepted 1 April 1997

Methanogenic *Archaea* are found in a wide range of environments and use several strategies to adjust to changes in extracellular solute concentrations. One methanogenic archaeon, *Methanosarcina thermophila* TM-1, can adapt to various osmotic conditions by synthesis of α-glutamate and a newly discovered compatible solute, N\(^{\text{a}}\)-acytetyl-β-lysine, or by accumulation of glycine betaine (betaine) and potassium ions from the environment. Since betaine transport has not been characterized for any of the methanogenic *Archaea*, we examined the uptake of this solute by *M. thermophila* TM-1. When cells were grown in mineral salts media containing from 0.1 to 0.8 M NaCl, *M. thermophila* accumulated betaine in concentrations up to 140 times those of a concentration gradient within 10 min of exposure to the solute. The betaine uptake system consisted of a single, high-affinity transporter with an apparent *Kₘ* of 10 μM and an apparent maximum transport velocity of 1.15 nmol/min/mg of protein. The transporter appeared to be specific for betaine, since potential substrates, including glycine, sarcosine, dimethyl glycine, choline, and proline, did not significantly inhibit betaine uptake. *M. thermophila* TM-1 cells can also regulate the capacity for betaine accumulation, since the rate of betaine transport was reduced in cells pregrown in a high-osmolarity medium when 500 μM betaine was present. Betaine transport appears to be H\(^{+}\) and/or Na\(^{+}\) driven, since betaine transport was inhibited by several types of protonophores and sodium ionophores.

Methanogenic *Archaea* have been isolated from a variety of habitats, including lake sediments, hot springs, marine sediments, sewage sludge, and the intestinal tracts of animals (11). In all these environments, methanogens must cope with a variety of extracellular solutes, such as acetate, formate, NH₄\(^{+}\), sulfate, and the intestinal tracts of animals (11). In all these environments, methanogens must cope with gen-

© 1997, American Society for Microbiology
GLYCINE BETAINE TRANSPORT IN A METHANOSARCINA

VOL. 63, 1997 GLYCINE BETAINE TRANSPORT IN A METHANOSARCINA 2253

MATERIALS AND METHODS

Strains and culture media. M. thermophila TM-1, a representative of Methanosarcina spp., was used for all studies (29, 37). The basal carbonate-buffered (pH 6.8) anaerobic medium (29) was supplemented with 50 mM MgCl₂, 10 mM KCl, 10 mM NaN₃, 1 mM CaCl₂, trace elements, and vitamins. Medium was prepared aerobically under N₂- CO₂ (4:1) atmosphere and anaerobiically dispensed into Wolin-Miller tubes that were sealed with butyl rubber stoppers and secured with aluminum crimp seals (29). After the tubes were autoclaved, 1 mM NaN₃ · H₂O and 100 mM methanol were anaerobiically added with a syringe prior to cell inoculation. Osmolarity was varied by adding NaCl to a concentration between 0.1 and 0.8 M as indicated in the figures.

Growth rate experiments. Strain TM-1 was grown in the basal anaerobic medium with various osmolarities either with or without 500 μM betaine addition. Cultures were incubated at 35°C on a tube rotator, and the optical density at a 600-nm wavelength (OD₆₀₀) was measured every 2 to 4 h for 48 h. The cell growth rate was determined from the linear portion of the growth curve by computer-generated regression analysis (SlideWrite). Growth rates from triplicate growth experiments were within ±12%.

Anaerobic procedures. For routine cell growth, a 10% inoculum of exponentially growing culture was aseptically inoculated into a 100-ml serum bottle containing 20 ml of fresh medium with a double-barreled 23-gauge Vacutainer needle (Belco Inc.). Cells were grown at 35°C for 18 to 24 h to an OD₆₀₀ of 0.4 to 0.5 (mid-log phase of growth). Culture bottles were then introduced into a Coy anaerobic chamber, and the cells were transferred into centrifuge tubes with O-ring-sealed caps. Cells were centrifuged anaerobically at 3,000 × g for 15 min at 25°C (28, 29). To ensure that no oxygen was present, all syringes, centrifuge tubes, and needles were stored overnight in an anaerobic chamber (Coy Chamber Co.) and then rinsed with 100 mM Na₂S · 9H₂O and 100 mM methanol. Medium was prepared under a nitrogen atmosphere.

Preparation of [¹⁴C]betaine. Synthesis of methyl-[¹⁴C]-labeled betaine from methyl-[¹⁴C]-labeled choline chloride (30 μCi, 0.2 μCi/mmol; Amersham) was performed according to the protocol of Perroud and LeRudulier (24). The [¹⁴C]betaine product was separated from the reaction mixture on a Dowex 50W-X (H⁺) column by elution with 2 M NH₄OH. To evaluate the purity of the product, samples (5 μl) were mixed with 1 M carrier standards of betaine and choline chloride and spotted onto Whatman 3MM paper. The electrophoreto- gram was run at 1,000 V for 30 min with 0.75 M formic acid as the buffer. The electrophoretogram was then dried and exposed to iodine fumes to localize the betaine (Rₚ = 0.22) and choline chloride (Rₚ = 0.66). The radioactivity was monitored by a radioactivity counter (Ambis Systems, San Diego, Calif.). The [¹⁴C]betaine product yield was virtually 100% by this technique, and the typical radioactivity was 12 μCi/ml.

Transport assay with silicone oil centrifugation of cells. The protocol of Engel et al. (9) was adapted for M. thermophila TM-1 to allow the transport assays to be performed under anaerobic conditions in stopped 5-ml serum bottles. The appropriate mixture of [¹⁴C]betaine and carrier betaine was added with a Hamilton gas-tight syringe through the septum into the serum bottle (Belco, Inc.). Betaine transport was initiated by adding 1.8 to 2.8 ml of cell suspension. A 300-μl volume was immediately drawn out from the reaction mixture, and triplicate 100-μl subsamples were pipetted onto 100 μl of silicone oil (Dow grade 550, density = 1.07 g/ml; Dow Chemical Co.) in each of three microcentrifuge tubes. Transport was terminated when the cells were separated from the betaine solution by centrifugation (17,000 × g) through the silicone oil underlay; this occurred in less than 1 min. After completion of the time course experiment, the microcentrifuge tube tips containing the visible cell pellets were cut, the cell pellets were dispersed in Ecoscint liquid scintillation cocktail, and the radioactivity was counted in a liquid scintillation counter. By this technique, the contamination of the product was less than 1 μg/ml, and the recover of the reaction mixture liquid. No droplets were associated with the cell pellet upon visual inspection of the tube. This was also confirmed by the lack of [¹⁴C]betaine associated with the cell pellet when the methanogenic substrate methane was omitted from the assay mixture.

In experiments, the total concentration of betaine in the transport reaction mixture was adjusted so that no more than 10% of the osmolyte was taken up; this condition was verified by comparing the total radioactivity in the cell pellet with the total radioactivity added in the reaction mixture. We evaluated whether the harvesting and washing steps resulted in the release of betaine into the surrounding fluid by preparing ethanol extracts of the TM-1 cells and of the fluid by quantitating the betaine with its periodate derivative (33). Transport rates were calculated from the amount of radioactivity taken up by the cells during a period of 10 to 45 min, depending on the osmolyte concentration. Analysis was fitted to the linear portion of the uptake curve by computer-generated regression analysis (SlideWrite). All data are mean values of triplicate replicates for each time point. Each experiment was conducted in duplicate unless otherwise noted. The means of the triplicate transport experiments agreed to within ±5%, while the means of duplicate transport experiments generally agreed to within ±10%.

Competition for betaine transport. Inhibition of betaine transport by the structural analogs glycine, sarcosine, dimethyl glycine, choline, and proline was tested in a competition assay. Each compound was evaluated at a molar ratio to betaine of 20:1 or 40:1; a control assay in which no competitor was included was also performed. In the competition assays, the cell suspensions were precultured for 10 min with each potential competitor and transport was measured in the presence of the competitor. Transport was initiated by addition of the labeled betaine mixture (final concentration, 100 μM), and transport continued for 30 to 60 min. Inhibition was expressed as the percent inhibition of the rate of label uptake in the presence of each competitor compared with the rate of uptake of the control.

The properties of the betaine transporter were tested in an inhibition assay with the following compounds: the ATPase inhibitor N,N,N'-dicyclohexylcarbodi-imide (DCCD) (2); the methyl coenzyme M reductase inhibitor bromothymol blue (BTA) (12); the sulfhydryl reagent 5-ethylmyleamide (NEM) (8); the potassium cyanide analog 5-chloro-5-dicyclohexylcarbodi-imide (DCCP) (15) and 5,3,4,5'-tetrachlorosalicylic acid (TCS) (2); the sodium ionophores monensin (2), ETH157, and ETH2120 (gift of M. Blaut); the potassium ionophore gramicidin D (13); and the Na⁺/H⁺ antipporter inhibitor harmaline (17). The inhibition assays were conducted in the same manner as the competition assays described above. The metabolic uncouplers were added at physiologically relevant concentrations based upon their ability to suppress methane production in strain TM-1.

Protein determination. Total cellular protein was determined by a modified Lowry method and extracellular compatible solutes present in strain TM-1 give a high background in the standard protein assay. Total cell protein was first precipitated by addition of 9% ice-cold trichloroacetic acid, and the mixture was allowed to sit on ice for 10 min. The supernate was removed, and the protein pellet was resuspended in distilled water by heating at 70°C for 10 min. Bovine serum albumin (fraction V) was used as a standard and treated in the same fashion as the cell protein. When strain TM-1 was grown in 0.1 to 0.8 M NaCl, 1 OD₆₀₀ unit of cells was equivalent to 346 μg of protein per ml.

Gas chromatographic analysis of methane production by TM-1. Methane formation was monitored by assaying the headspace gas of the 5-ml serum bottles or Wolin-Miller tubes. A Shimadzu model 8A gas chromatograph was equipped with a Hayes Sep-Q column and a flame ionization detector (31).

RESULTS

Effect of betaine on the growth rate of M. thermophila TM-1. In order to examine if the presence of betaine in the culture medium affects the rate of M. thermophila cell growth, cells were grown at different concentrations of NaCl ranging from 0.1 to 0.8 M in either the presence or absence of betaine (Fig. 1). Betaine additions had no effect on the cell growth rate at osmolarities of ≤0.2 M NaCl. However, above 0.2 M NaCl, cultures supplemented with betaine all grew noticeably faster.
than did cultures that lacked betaine. The increased rate of cell growth above 0.2 M NaCl appears to correlate well with the accumulation of betaine by TM-1 cells (31) and the suppression of α-glutamate and NaBH₄ synthesis (31, 32).

Active transport of betaine. An anaerobic betaine uptake assay was developed for *M. thermophila* TM-1 (see Materials and Methods) (Fig. 2). Cells pregrown at 0.4 M NaCl and then incubated in 0.4 M NaCl with methanol present as a methanoxygenic substrate transported betaine at a concentration as low as 4 μM and at a rate of 0.33 nmol/min/mg of protein. The transport rate increased to a maximum rate of 1.0 nmol/min/mg of protein at 24 μM betaine (Fig. 2). The methanoxygenic substrate, methanol, was essential for this process: its omission resulted in the complete loss of betaine uptake by cells. Solute uptake also required the exclusion of oxygen from the transport assay: trace amounts of O₂ (ca. 10 to 25 μl of O₂) when added to the assay vial inhibited uptake by more than 95%.

Active transport of [¹⁴C]glutamate. At NaCl concentrations ranging from 0.05 to 0.2 M NaCl, *M. thermophila* TM-1 accumulates α-glutamate as an osmolyte (31). As glutamate can be acquired by some organisms by either solute transport or de novo synthesis, strain TM-1 was examined for its ability to transport [¹⁴C]glutamate under the same conditions we had observed for betaine transport. We were unable to observe α-glutamate transport when it was tested at either 10 or 50 μM in either 0.05 or 0.2 M NaCl transport buffer conditions.

Effect of NaCl on betaine transport rates. It is apparent that *M. thermophila* TM-1 can actively transport betaine over a wide range of salt concentrations and that it can regulate this capacity (Fig. 3). When cells were grown in the absence of added betaine at 0.1 M NaCl, they transported 10 μM betaine at a rate of 0.009 nmol/min/mg of protein. The uptake rate increased considerably as the NaCl level of the medium was raised to 0.4 M, where betaine was transported at a maximal rate of 0.70 nmol/min/mg of protein. Cells grown at NaCl concentrations above 0.4 M exhibited a somewhat reduced rate of betaine uptake.

We also examined the rate of betaine transport in cells pregrown at different concentrations of salt when 500 μM betaine was present (Fig. 3). At all osmolarities tested, cells exhibited a lower rate of betaine transport than was seen in cells grown without added betaine: the transport rates were lower by 2- to 40-fold. The reduced rates of betaine transport seen in cells pregrown with betaine present did not appear to be due to the leakage or export of betaine from the cells for several reasons. First, the TM-1 cells were always gently transferred from growth media to assay buffer of the same osmolality to prevent osmotic shock. Under these conditions, we did not detect the release of betaine into the transport buffer of freshly washed cells by an assay for betaine (20, 33). Second, we noted that cells transferred from betaine-free medium to a medium containing 500 μM betaine exhibited intermediate betaine transport rates until several cell doublings had occurred.

Kinetics of betaine transport. To determine if strain TM-1 possesses betaine transporters with different substrate affinities, the kinetic parameters of betaine transport were determined with cells grown at 0.4 M NaCl with and without betaine. Initial linear rates of betaine transport were observed for osmolyte concentrations from 4 to 100 μM. In cells pregrown without betaine being present, double-reciprocal (Lineweaver-Burk) plots of the betaine transport rates versus substrate concentrations yielded a single line and resulted in an apparent *K₅* of 10 μM and a maximum transport velocity (*V₅₀*) of 1.15 nmol/min/mg of protein (Fig. 4). With cells pregrown with 500 μM betaine, Lineweaver-Burk plot transformations of the betaine transport rates as a function of osmolyte concentrations yielded a second line with approximately the same apparent *K₅* (10 μM) but with an apparent *V₅₀* of 0.25 nmol/min/mg of protein (Fig. 4). The rate for betaine transport in cells pregrown with betaine was about fivefold lower than in cells pregrown without betaine.

Since increases in osmotic stress can induce or activate additional betaine transporters (5, 23), the kinetic parameters of betaine transport were also examined for cells pregrown and assayed at other NaCl concentrations. Cells grown in 0.2 M NaCl exhibited the same *K₅* (10 μM) but with an apparent *V₅₀* of 0.25 nmol/min/mg whether they were grown with or without betaine. The same *K₅* (10 μM) but a higher *V₅₀* (0.5 nmol/min/mg) was derived for betaine transport in cells pregrown in 0.8 M NaCl.
without betaine. The V_{max} for cells pregrown in 0.8 M NaCl with betaine was 0.05 nmol/min/mg (Table 1). These data suggest that *M. thermophila* TM-1 possesses only one betaine transporter and that it has a relatively high affinity for betaine.

Specificity of the betaine transporter. In order to determine if the transporter in strain TM-1 is specific for betaine or, alternatively, is a general transporter for betaine and other structurally related compounds, we tested if betaine transport was inhibited in a competition assay. When cell suspensions of strain TM-1 were incubated with glycine, sarcosine, dimethyl glycine, or choline, betaine transport rates were reduced by only 13 to 20%. Since studies with *E. coli* suggested that proline was also transported by the betaine transporter, and since many eukaryotic cells can accumulate proline as a compatible solute, we examined the ability of the TM-1 betaine transporter to take up proline. When betaine uptake was tested a 20-fold molar excess in the presence of proline, proline had little effect on the betaine transport rate (i.e., transport was inhibited by 30%). These experiments suggest that the betaine transporter in strain TM-1 is highly specific for betaine.

Effect of metabolic uncouplers on betaine transport. Since strain TM-1 requires the presence of the methanogenic substrate methanol for active transport of betaine, we tested the effect of a variety of metabolic uncouplers on betaine uptake to reveal information about the energy requirements of the transport system. When cells were incubated with methanol and either the methyl coenzyme M reductase inhibitor BES or the ATPase inhibitor DCCD, relatively little inhibition of betaine transport was observed (Table 2). Similar results were observed when NEM was used. However, certain protonophores and other ionophores were relatively effective in blocking betaine uptake. Betaine transport rates were inhibited by 85 to 95% when cell suspensions were incubated with 5 to 20 μM concentrations of either of the protonophores CCCP and TCS (Table 2). The sodium ionophores, including monensin, ETH157, and ETH2120, also inhibited betaine transport by 75 to 85% when they were tested at 20 μM (Table 2). Harmaline, an inhibitor of Na$^+$/H$^+$ antipporter, also inhibited betaine transport by about 50% when cells were incubated with 100 μM. Gramicidin D, an antibiotic which acts as a potassium ionophore, had no effect on betaine transport when it was tested at 10 μg/ml, but it completely inhibited transport at a concentration of 30 μg/ml. As noted previously, betaine uptake by cells required a methanogenic substrate (methanol) and was abolished by the presence of trace amounts of oxygen.

DISCUSSION

Betaine is a compatible solute for the methanogenic archaeon *M. thermophila* TM-1. *M. thermophila* TM-1 cannot synthesize betaine, and it does not use exogenous betaine for growth (31). Instead, it responds to increasing osmotic stress by accumulating exogenous betaine. Betaine appears to be a truly compatible solute in *M. thermophila*, as growth rates were noticeably higher in cells grown at elevated levels of NaCl and when betaine was present than in cells that lacked betaine additions (Fig. 1).

Betaine accumulation appears to be a common response in methanogenic isolates from highly osmotic environments. For example, the marine methanogens *Methanococcus voltae*, grown in 0.22 M NaCl, *Methanogenium cariaci*, grown in 0.512 M NaCl (27), and *Methanogenium anulus* AN9, grown in 0.512

TABLE 1. Estimates of K_s and V_{max} values for betaine transport in *M. thermophila* TM-1 grown and assayed over a range of salt concentrations

<table>
<thead>
<tr>
<th>NaCl concn (M)</th>
<th>Addition</th>
<th>K_s (μM)</th>
<th>V_{max} (nmol/min/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>Betaine</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>0.4</td>
<td>None</td>
<td>10</td>
<td>0.1</td>
</tr>
<tr>
<td>0.8</td>
<td>Betaine</td>
<td>10</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>10</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Substrate affinities and transport velocities derived from Lineweaver-Burk plot transformations of betaine uptake rates at the salt concentrations indicated.
and 1.5 M NaCl (25), all accumulated betaine. The methanogen Methanohalophilus mahii, isolated from Great Salt Lake sediments, accumulated betaine when it was grown in 0.66 M NaCl, (27) and Methanohalophilus zillitae, isolated from an alkaline lake sediment, accumulated betaine when it was grown in 0.66 and 1.5 M NaCl (25). Although eight strains of a halophilic methanogen, Methanohalophilus sp., accumulated intracellular betaine in response to 0.7 to 4.3 M NaCl by de novo synthesis (19), at least two of these strains also accumulated exogenous betaine when they were grown over a similar range of salt concentrations (0.7 to 3.1 M NaCl). Several Methanosarcina spp., isolated from osmotically diverse environments, also accumulated betaine in response to highly osmotic conditions (31). This appears to be a common trait among species within this genera, although the specificities and other properties of the uptake systems were uncharacterized prior to this study.

M. thermophila possesses one high-affinity transporter for betaine. We developed an anaerobic transport assay for betaine transport in order to evaluate the transport properties of *M. thermophila* TM-1. It appears to contain a single betaine transporter of relatively high affinity. This is in contrast to some eukaryotic (canine kidney cells [23]) and prokaryotic (*S. typhimurium* [4, 5] and *E. coli* [10, 22]) cells.

The betaine transporter in TM-1 appears to have a high specificity for betaine, as structurally related compounds had little effect on betaine transport rates. These results are similar to those from competition assays performed with the betaine transporter in *E. coli*. Interestingly, the structural analog proline significantly inhibits betaine transport in this enteric bacterium (21). We did not test proline betaine competition in our transport assays with *M. thermophila* TM-1. No data are available on the substrate specificities of eukaryotic betaine transporters.

Initial studies with both *E. coli* and *S. typhimurium* suggested that betaine transport was a secondary activity of the proline transporter. Subsequent investigations demonstrated that betaine is preferentially taken up and concentrated over proline to alleviate osmotic growth inhibition (7). However, proline was a poor competitor for the betaine transporter in *M. thermophila* TM-1. This suggests that the betaine transporter in TM-1 differs somewhat from the bacterial transporter. Furthermore, growth studies with TM-1 indicated that proline cannot replace betaine as an osmolyte since it is not accumulated by cells (31, 32) and that proline cannot stimulate the rate of cell growth at elevated osmolarity as betaine can (Fig. 1). This is in contrast to some enteric bacteria that possess a transporter specific for proline (7).

Osmotic stress, and not betaine, induces or activates the betaine transporter in strain TM-1. Osmotic stress appears to induce or activate the betaine transporter in TM-1, as cells pregrown and assayed in increasing amounts of NaCl exhibited an increasingly greater capacity for betaine transport, as evidenced by increases in the rate of betaine transport. Betaine transport in TM-1 was activated at 0.2 M NaCl and reached maximum capacity at 0.4 to 0.5 M NaCl. An increase in betaine transporter capacity with increasing osmotic stress was also observed in *Bacteria* and *Eucarya*. Both *E. coli* and *S. typhimurium* possess high-affinity betaine transporters which are activated by increasing osmotic stress. In *E. coli*, the high-affinity betaine transporter is activated at a relatively low (0.05 M) concentration of NaCl, with a plateau of activity from 0.1 to 0.3 M NaCl (22), while in *S. typhimurium*, betaine transport by the high-affinity transporter is activated at 0.15 M, with a maximum capacity at 0.5 M (5). In MDCK cells, both of the betaine transporters are activated by increasing osmolarity and over salt concentrations similar to those observed for *S. typhimurium* (23) and strain TM-1.

Strain TM-1 can regulate its capacity for betaine transport. Betaine transport rates were reduced in cells pregrown in media containing 500 μM betaine (Fig. 3). These results suggest that strain TM-1 can modulate the amount of the transporter protein in the cell. In *S. typhimurium*, no feedback control was evident for high-affinity betaine transport, as initial and steady-state rates of betaine transport appeared to be similar (5). Instead, regulation of the intracellular betaine concentration in response to fluctuating osmotic stress appears to be controlled by a betaine efflux system which is independent of the betaine transport system (16).

Although no attempt was made to specifically look for a betaine efflux system in eukaryotic cells, feedback control of intracellular betaine concentrations by regulating betaine transporter capacity appears to be the principal means of regulating cellular response to fluctuating osmotic stress in eukaryotic cells. Betaine transport rates in MDCK cells exposed to betaine over 2 days were approximately 50% lower than those in cells which had not been previously exposed to betaine (23). Direct evidence for feedback control of the betaine transporter by betaine or by protein inactivation in strain TM-1 awaits further study.

Betaine transport in strain TM-1 is linked to the proton and/or sodium transmembrane gradient. Our experiments with energy substrates and metabolic uncouplers suggest that betaine transport is an active process and is driven by a proton or sodium gradient. Metabolically active cells were required for betaine transport, since the absence of a methanogenic substrate (methanol) abolished betaine transport. However, inhibition of ATP synthesis and methyl reductase activity with DCCD or BES did not abolish betaine transport, which suggests that TM-1 did not specifically require active ATP synthesis or methanogenesis to drive betaine transport.

Although most of the inhibitors had a large effect when tested at a 100 μM concentration, compounds which collapse various proton or ion gradients in *M. thermophila* had the greatest effect at lower concentrations (20 μM). This finding suggests that metabolically active cells were required in order to maintain a transmembrane energy gradient in TM-1 cells. In particular, the protonophores CCCP and TCS strongly inhibited betaine transport, suggesting at least that betaine transport might be driven by a proton gradient. Although harmine, an inhibitor of Na+/H+ antiporters, had a slight effect on betaine transport, this may have been the result of a secondary effect on proton or ion motive forces rather than an example of a primary effect on betaine transport.

Betaine transport systems in eukaryotes appear to be sodium dependent. In MDCK cell assays, Nakaniishi et al. (23) were able to demonstrate that betaine transport was abolished by replacing the NaCl in the betaine transport medium with equimolar amounts of LiCl. On the other hand, betaine transport in the *Bacteria* appears to be driven by a proton gradient based upon evidence that betaine transport was inhibited by 2,4-dinitrophenol, a protonophore (*E. coli* [24]).

With regard to what is known about other transport systems in *Archaea*, amino acid transport also appears to be driven by either a proton or a sodium gradient (8, 15, 34). Protonophores and sodium ionophores had the greatest effect on isoleucine transport in *Methanococcus voltae*, while gramicidin D had little effect on isoleucine transport (8). Any direct evidence of a specific proton or of a sodium-driven betaine symporter in TM-1 will require the use of membrane vesicle systems.
ACKNOWLEDGMENTS

We thank Ned Ruby and Gary Cecchini for advice concerning the transport assay as well as valuable discussions and Robert Mah for use of the gas chromatograph.

This work was supported in part by D.O.E. grant DE-FG03-86ER13498 to R.P.G. and N.S.F. Marine Biotechnology postdoctoral fellowship OCE-9028344 to L.M.P.

REFERENCES

