A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

GENRICH I. BURD, D. GEORGE DIXON, AND BERNARD R. GLICK*

Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received 1 December 1997/Accepted 28 July 1998

A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni\(^{2+}\), Pb\(^{2+}\), Zn\(^{2+}\), and Cr\(^{6+}\), produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

Pollution of the biosphere by toxic metals has accelerated dramatically since the beginning of the industrial revolution. The primary sources of this pollution include the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, fertilizers, pesticides, and sewage. Toxic-metal contamination of groundwater and soil, which poses a major environmental and human health problem, is currently in need of an affordable solution. Moreover, unlike organic pollutants, metals cannot be degraded to harmless products, such as carbon dioxide, but instead persist indefinitely in the environment, complicating their remediation.

Living plants have the ability to accumulate heavy metals from soil and water, in particular heavy metals which are essential for their growth and development (3, 36). Certain plants also have the ability to accumulate heavy metals which have no known biological function (8). However, excessive accumulation of these metals can be toxic to most plants. Heavy metals ions, when present at an elevated level in the environment, are adsorbed by roots and translocated to different plant parts, leading to impaired metabolism and reduced growth (5, 16).

Phytoremediation, i.e., the use of green plants to remove, contain, or render harmless environmental contaminants, is considered to be an alternative to the approaches that are currently in use for dealing with heavy metal contamination (6, 10, 11, 13, 41). Phytoremediation of metals might take one of several forms: phytoextraction, rhizofiltration, or phytostabilization. Phytoextraction refers to processes in which plants are used to concentrate metals from the soil into the roots and shoots of the plant; rhizofiltration is the use of plant roots to remove metals from effluents; and phytostabilization is the use of plants to reduce the mobility of heavy metals (and thereby reduce the spread of these metals in the environment). Recently, metal-tolerant plants have been used to vegetate and control soil erosion on metal mine tailings and waste piles, i.e., phytostabilization (13, 40). Moreover, there are a number of reports of using metal accumulating plants to remove toxic metals from soil, i.e., phytoextraction-also called phytodecontamination (2, 10, 11, 13, 32).

In the environment, the roots of plants interact with a large number of different microorganisms, and these interactions, together with the soil conditions, are major determinants of the extent to which plants grow and proliferate (20, 34). We previously reported that many plant growth-promoting bacteria, i.e., free-living soil bacteria that are involved in a beneficial association with plants, contain the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (19, 20, 30). It was hypothesized that this enzyme, which has no known function in bacteria, might be part of a hitherto undescribed mechanism used by certain bacteria to stimulate plant growth (21). This could occur by ACC deaminase modulating the level of ethylene in developing plants (18, 22, 23).

It is well documented that plants respond to a variety of different environmental stresses by synthesizing “stress” ethylene (1, 28). In fact, a significant portion of the damage to plants from environmental stress—such as infection with fungal phytopathogens—may occur as a direct result of the response of the plant to the increased level of stress ethylene (46). In the presence of fungal pathogens, not only does exogenous ethylene increase the severity of a fungal infection but also inhibitors of ethylene synthesis can significantly decrease the severity of infection. Since the enzyme ACC deaminase, when present in plant growth-promoting bacteria, can act to modulate the level of ethylene in a plant, we sought in the work reported here to test whether such bacteria might lower the stress placed on plants by the presence of heavy metals and therefore ameliorate some of the apparent toxicity of heavy metals to plants.

MATERIALS AND METHODS

Media. The basic mineral medium used for isolation and growth of nickel-resistant bacteria was the Tris-buffered low-phosphate (TLP) medium described by Mergeay et al. (35) and supplemented with trace metals (1 ml of a stock solution of trace metals per liter, where the stock solution consists of [in grams per liter] FeSO\(_4\) · 7H\(_2\)O, 0.2; ZnSO\(_4\) · 7H\(_2\)O, 0.01; MnCl\(_2\) · 4H\(_2\)O, 0.003; CoCl\(_2\) · 6H\(_2\)O, 0.02; CuCl\(_2\) · 6H\(_2\)O, 0.001; NiCl\(_2\) · 6H\(_2\)O, Na\(_2\)MoO\(_4\) · 2H\(_2\)O, 0.5; H\(_3\)BO\(_3\),...
control or in a bacterial suspension in distilled water adjusted to an absorbance at 600 nm of either 0.5 or 0.025 and then used for seed inoculation.

**Moisture content (%)** .................................................. 67.3
**Total carbon (%)** .......................................................... 193
**Total inorganic carbon (%)** ............................................ <0.01
**pH** .............................................................................. 5.58

A 20-ml volume of TLM medium was added to 2 g of soil, and the suspension was incubated at 25°C for 2 h in a rotary shaker (400 rpm). The suspension was then allowed to stand for about 1 h before 0.3 ml of sterilant was spread over solid TLM medium containing 0.2% (wt/vol) glugonate, trace elements, and 1 mM NiCl2. The plates were incubated for 2 days at 30°C. Nickel-resistant colonies were purified on the same medium and then tested for the ability to grow on TLM medium with ACC as the only source of nitrogen.

**Selection of a nickel-resistant bacterial strain.** Nickel is an essential micronutrient for many microorganisms (25). However, at millimolar concentrations, nickel inhibits the growth of most wild-type bacteria and is tolerated by only a minority of microorganisms (42). Nevertheless, we have isolated nickel-resistant bacteria from highly polluted nickel- and copper-containing soil (Table 1) by using a spread plate procedure with pH-neutral TLM medium. This medium is designed to avoid the precipitation of heavy metal salts at 1 mM. In total, there were approximately 4 × 10^7 nickel-resistant bacteria per g (dry weight) of soil, or about 1% of the total bacterial population cultured on TLM medium.

To isolate plant growth-promoting bacteria, all of the nickel-resistant isolates were tested for the ability to grow on minimal medium with ACC as the sole source of nitrogen (19). Approximately 7% of the nickel-tolerant strains also had the ACC^+ phenotype.

**RESULTS**

**Selection of a nickel-resistant bacterial strain.** Nickel is an essential micronutrient for many microorganisms (25). However, at millimolar concentrations, nickel inhibits the growth of most wild-type bacteria and is tolerated by only a minority of microorganisms (42). Nevertheless, we have isolated nickel-resistant bacteria from highly polluted nickel- and copper-containing soil (Table 1) by using a spread plate procedure with pH-neutral TLM medium. This medium is designed to avoid the precipitation of heavy metal salts at 1 mM. In total, there were approximately 4 × 10^7 nickel-resistant bacteria per g (dry weight) of soil, or about 1% of the total bacterial population cultured on TLM medium.

To isolate plant growth-promoting bacteria, all of the nickel-resistant isolates were tested for the ability to grow on minimal medium with ACC as the sole source of nitrogen (19). Approximately 7% of the nickel-tolerant strains also had the ACC^+ phenotype.

Finally, nickel-resistant bacterial strains that were also able to grow on ACC were tested for the ability to produce siderophores. Based on the idea that bacterial siderophores might facilitate the uptake of nickel by plants, the best siderophore-producing strain (designated SUD165) was selected for subsequent study.

**Identification and properties of strain SUD165.** The microorganism isolated was gram negative, motile, methyl red positive, and Voges-Proskauer positive, and citrate positive. On MacConkey agar, it fermented d-glucose, d-galactose, d-mannitol, d-sorbitol, l-arabinose, and sucrose but not lactose. SUD165 cells grew on M9 minimal medium with the above-mentioned sugars and salicin but not on M9 with lactose. On nutrient agar or solid TLM medium plus gluconate, the bacterium formed

<table>
<thead>
<tr>
<th>Metal or characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal content (mg/kg [dry wt] of soil)</td>
<td>0.03% (7) and 0.2% sodium gluconate. For solid medium, Baeto Agar (Difco) was added at 2% (wt/vol). Stock solutions of nickel chloride (1 and 0.1 M) were autoclaved and added to the medium as required. Cell counts were determined by using nutrient broth agar (Difco). Utilization of carbon sources was investigated by supplementing M9 minimal medium (37) with various organic compounds (0.2%, wt/vol). For testing resistance to antibiotics and metals, stock solutions were filter sterilized and then added to sterile TLM medium.</td>
</tr>
</tbody>
</table>
K. ascorbata promoting bacterium with 300 nmol/mg/h for the well-characterized plant growth-
motion effect (33). Furthermore, as expected, the condition often required to observe a significant root elonga-
tion at 25°C (data not shown).

**Effect of nickel on canola and tomato seedlings.** A series of experiments to study the sensitivity of canola to Ni^{2+} cations in growth pouches was undertaken (Fig. 2). These experiments revealed that canola seeds developed normally even in the presence of up to 0.1 mM nickel chloride. Above this concen-
tration, plant root and shoot elongation was inhibited.

In pot experiments, i.e., in the presence of soil (Fig. 3), a higher concentration of Ni^{2+} was required to noticeably inhibit canola root and shoot length than in growth pouch experi-
ments. The apparent lower level of toxicity of Ni^{2+} in soil most probably represents the binding of Ni^{2+} to soil particles, thereby making the cation unavailable to the developing seedlings. Tomato plants grown in pots were somewhat more sensitive to Ni^{2+} than were canola plants grown in pots (Fig. 4). With both tomatoes and canola grown in pots, the roots appeared more sensitive to the inhibitory effects of Ni^{2+} than did the shoots.

With canola seedlings in growth pouches, the roots and shoots were equally sensitive to growth inhibition by Ni^{2+}.

**Effect of K. ascorbata SUD165 on the toxicity of nickel to canola and tomato seedlings.** The effect of adding K. ascorbata SUD165 to canola or tomato seeds before germinating the seeds, either in a growth pouch (canola only) or in pots (canola and tomato), in the presence of inhibitory concentrations of Ni^{2+} was examined (Table 3). The results of these experiments are presented as a TI, making it easier to compare the effects of different treatments. A TI of 1.0 indicates that the treatment

---

**TABLE 2. Effect of K. ascorbata SUD165 on canola root elongation in gnotobiotic growth pouches**

<table>
<thead>
<tr>
<th>Exp</th>
<th>SUD165 present</th>
<th>Root length, mm (mean ± SEM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
<td>44.7 ± 3.8</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>39.2 ± 3.9</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>36.1 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>47.5 ± 3.0</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>45.5 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>55.7 ± 2.3</td>
</tr>
</tbody>
</table>

*The values for the two treatments differ significantly (P < 0.001) in all three experiments. Data were analyzed by ANOVA, with 55 to 60 seeds tested for each value reported. The absorbance at 600 nm of the bacterial suspension was 0.025.
was not inhibitory, while a TI of 0.1 indicates that the growth of treated plants was only 10% of the growth of the control. Examination of the data in Table 3 shows that at all concentrations of nickel tested (1 to 6 mM Ni\(^{2+}\)), using both a low-level and a high-level bacterial cell treatment (cell suspension absorbance of 0.025 or 0.50, respectively), with both canola and tomato plants, with both roots and shoots, and in both gnotobiotic growth pouches and pots, the addition of *K. ascorbata* SUD165 significantly decreased the toxicity of the added nickel. The effect was highly reproducible in spite of variation in the root and shoot lengths. Moreover, the protective effect of *K. ascorbata* SUD165 increased as the density of the cell suspension increased.

\[^{63}\text{Ni}^{2+}\] accumulation by canola seedlings. Since plants growing in metal-enriched environments take up nickel to different degrees in response to external and internal factors (40), it is important to assess whether the addition of *K. ascorbata* SUD165 affects the uptake of nickel by canola seedlings. In five independent experiments in which the total radioactivity incorporated into 10 to 15 roots or shoots was measured, the presence of *K. ascorbata* SUD165 did not change the amount of nickel taken up per milligram (dry weight) of either roots (1,430 ± 83.7 and 1,370 ± 380 pmol/mg in the absence and presence of *K. ascorbata* SUD165, respectively) or shoots (178 ± 42.3 and 174 ± 64.5 pmol/mg, respectively); results are mean ± standard error of the mean. By this measure, although *K. ascorbata* SUD165 decreased the toxicity of Ni\(^{2+}\) to canola, it had no influence on amount of Ni\(^{2+}\) accumulated by the plant.

Ethylene production by plants grown in the presence of nickel. When a suspension of *K. ascorbata* SUD165 cells was used to treat canola seeds which were subsequently grown in gnotobiotic growth pouches in the presence of 2 mM Ni\(^{2+}\), the amount of ethylene that was evolved over 18 h decreased from 590 ± 182 nmol/mg (dry weight) in the absence of the bacterium to 275 ± 90 nmol/mg in the presence of the bacterium. The variation notwithstanding, ethylene levels were always higher in the absence of the bacterium each of the four times that this measurement was performed.

**DISCUSSION**

While the possibility of removing heavy metals from the environment by phytoextraction (10–13, 32, 41) is becoming increasingly attractive, heavy metals can be toxic, even for...
metal-accumulating and metal-tolerant plants, if the concentration of metals in the environment is too high.

One way to lessen the deleterious effects of heavy metals taken up from the environment on some plants might involve the use of plant growth-promoting bacteria or mycorrhizal fungi. In fact, it has been shown that the presence of ectomycorrhizal or vesicular-arbuscular fungi on the roots of plants decreased the uptake of metals by the plants and thereby increased plant biomass (8, 9, 14, 26, 31, 45). Similarly, chromium-resistant pseudomonads, isolated from paint industry effluents, were able to stimulate seed germination and growth of Triticum aestivum in the presence of potassium bichromate (24). In this case, the bacterial enhancement of seedling growth was associated with reduced chromium uptake.

In the present study, the newly isolated bacterium K. ascorbata SUD165 was highly effective at protecting plants from growth inhibition caused by the presence of high concentrations of nickel. However, on a dry-weight basis, the plant grown in the presence of the bacterium took up approximately the same amount of nickel, so that it is unlikely that the bacterium is somehow limiting nickel uptake by the plant.

The most likely explanation of the data is that the bacterium protects the plant against the inhibitory effects of nickel-induced stress ethylene formation. In this regard, (i) heavy metals can induce ethylene production by plants (48), (ii) an excess of ethylene can inhibit plant development (29), and (iii) the direct promotion of plant root growth by a number of different soil bacteria is based on the ability of bacterial ACC deaminase to hydrolyze and decrease the amount of ACC, an ethylene precursor, in plants and, as a result, to decrease ethylene biosynthesis by plants (18, 21, 23). Moreover, with canola seedlings grown in the presence of high levels of nickel, it was observed that the addition of K. ascorbata SUD165 caused a significant decrease in ethylene production.

In the model that was previously proposed for the stimulation of plant growth by soil bacteria that contain the enzyme ACC deaminase, some of the plant ACC is exuded from roots or seeds and then taken up by the bacterium and cleaved by ACC deaminase to ammonia and a-ketobutyrate (21). To maintain the gradient between internal and external ACC levels, the plant must exude increasing amounts of ACC. The lowering of ACC levels within the plant results in a reduction in the amount of plant ethylene and a decreased extent of ethylene inhibition of plant seedling root elongation. This model may also be invoked to explain how plant growth-promoting bacteria lower the concentration of stress ethylene in plants. Evidence for this model includes the fact that the ability of a bacterium to promote root elongation is positively correlated with both the ACC deaminase activity of the bacterium and the ACC content (measured by high-pressure liquid chromatography) of the plant tissues. Mutants of plant growth-promoting bacteria that are devoid of ACC deaminase activity and therefore do not hydrolyze ACC are unable to promote the elongation of canola roots. In several different biological assays, the chemical ethylene synthesis inhibitor 1-α-(aminooxyvinyl)glycine mimics the effect of the ACC deaminase-containing bacterium. Every bacterium that has so far been isolated on the basis of the ability to utilize ACC as a nitrogen source (and therefore to possess ACC deaminase activity) is capable of lowering plant ethylene levels and promoting root elongation.

Another possible explanation of the phenomenon described above is related to siderophore production by K. ascorbata SUD165. Thus, at least part of the toxic effects of some heavy metals, including nickel, in plants results from an induced iron deficiency, and there is evidence that increasing the supply of iron can reduce the severity of nickel toxicity (5, 7, 16, 50). Moreover, since bacterial siderophores can provide iron to various plants (4, 40, 47), siderophores produced by K. ascorbata SUD165 may reduce nickel toxicity by supplying the plant with iron and hence eliminating iron deficiency. However, it is likely that there is a sufficient amount of iron in seeds for the development of 4- to 10-day-old seedlings, so that mechanisms that involve providing iron to the plant do not need to be invoked here.

Regardless of the precise mechanism used by the bacterium to protect plants, the experiments with plant seedlings reported here suggest that certain bacteria may eventually find a use in the development of phytoremediation strategies. In this regard, heavy metals may be removed from polluted soil either by increasing the metal-accumulating ability of plants or by increasing the amount of plant biomass. In heavily contaminated soil where the metal content exceeds the limit of plant tolerance, it may be possible to treat plants with plant growth-promoting bacteria, increasing plant biomass and thereby stabilizing, revegetating, and remediating metal-polluted soils.

ACKNOWLEDGMENTS

We are grateful to The Waterloo Centre for Groundwater Research (Waterloo, Ontario, Canada); INCO, Inc. (Toronto, Ontario, Canada); and the Natural Sciences and Engineering Research Council of Canada for providing funds in support of this research. We thank C. Wren, Ecological Services Group, Guelph, Ontario, Canada, for the soil analyses.

REFERENCES