Cloning and Analysis of the l-Lactate Utilization Genes from *Streptococcus iniae*

A. GIBELLO,† M. D. COLLINS, L. DOMÍNGUEZ,*, J. F. FERNÁNDEZ-GARAYZÁBAL, AND P. T. RICHARDSON

Department of Microbiology, Institute of Food Research, Reading Laboratory, Reading RG6 6BZ, 1 and Department of Food Science and Technology, University of Reading, Reading RG6 6AP, 2 United Kingdom, and Departamento de Patología Animal I (Sanidad Animal), Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain

Received 2 April 1999/Accepted 27 July 1999

The presence of lactate oxidase was examined in eight *Streptococcus* species and some related species of bacteria. A clone (pGR002) was isolated from a genomic library of *Streptococcus iniae* generated in *Escherichia coli*, containing a DNA fragment spanning two genes designated *lctO* and *lctP*. We show that these genes are likely to be involved in the l-lactic acid aerobic metabolism of this organism. This DNA fragment has been sequenced and characterized. A comparison of the deduced amino acid sequence of LctP protein demonstrated that the protein had significant homology with the l-lactate permeases of other bacteria. The amino acid sequence of the LctO protein of *S. iniae* also showed a strong homology to l-lactate oxidase from *Aerococcus viridans* and some NAD-independent lactate dehydrogenases, all belonging to the family of flavin mononucleotide-dependent α-hydroxacyl-oxidizing enzymes. Biochemical assays of the gene products confirm the identity of the genes from the isolated DNA fragment and reveal a possible role for the lactate oxidase from *S. iniae*. This lactate oxidase is discussed in relation to the growth of the organism in response to carbon source availability.

The streptococci are a large group of gram-positive bacteria, some members of which are documented human and animal pathogens while others (e.g., *Streptococcus thermophilus*) are important in the dairy industry (1). Streptococci are traditionally considered to be catalase negative and facultatively anaerobic or aerotolerant, with a homofermentation metabolism producing l-lactic acid from glucose fermentation (17). A key enzyme involved in l-lactate production in bacteria is the NAD-dependent lactate dehydrogenase (EC 1.1.1.27), which is allosterically activated by fructose-1,6-diphosphate (FDP) in the streptococci examined to date (9, 32). This enzyme catalyzes the reduction of pyruvate to lactate by using NADH as the coenzyme and has been widely studied in different streptococcal species and other lactic acid bacteria (12, 14).

Although lactate is the end product of lactic acid fermentation, it can be further metabolized by some lactic bacteria which have NAD-dependent, flavin-containing lactate dehydrogenases or lactate oxidases (12, 17). The NAD-independent enzymes are widely distributed and studied in both gram-positive and -negative bacteria (5, 6, 11, 12). There is little published information, however, about the presence of lactate oxidase in bacteria in general.

L-Lactate oxidase catalyzes the oxidation of l-lactate with molecular oxygen, producing pyruvate and hydrogen peroxide as end products. This enzyme activity has been detected only in bacteria that have mainly fermentative metabolisms, such as *Aerococcus viridans* and some species of *Pedicoccus*, *Enterococcus*, and *Streptococcus* (8, 33). However, the gene for this enzyme has been cloned and sequenced only in *A. viridans* (25). The distribution, physiological function, and properties of lactate oxidase in this group of bacteria are poorly understood. Since hydrogen peroxide production has been shown to be detrimental to bacteria, it is reasonable to assume that oxidase systems which produce such toxic compounds would not have evolved unless there was some benefit for the cell synthesizing these enzymes (4). Such benefits could be related to the ability of bacteria to survive when using compounds such as glycerol or lactate as energy sources when growing under aerobic conditions. Another benefit could be higher growth yields in the presence of low concentrations of sugar (4, 12).

This study set out to determine the presence of the lactate oxidase gene in those genera in which lactate oxidase activity has been observed, as well as in another bacterium phylogenetically related to *A. viridans*, by using Southern blotting and PCR analyses. This report describes for the first time the cloning, characterization, and expression in *Escherichia coli* of two genes from *Streptococcus iniae* (encoding l-lactate permease and l-lactate oxidase) which we show to be involved in lactate metabolism. We further describe the comparison of the lactate oxidase of *S. iniae* with the lactate oxidase of *A. viridans* and other sequenced bacterial flavin enzymes with the same substrate recognition.

MATERIALS AND METHODS

Bacteria, plasmids, and growth conditions. The *Streptococcus* strains used were *S. mutans* ATCC 25175, *S. uberis* ATCC 19436, *S. mitis* ATCC 33399, *S. salivarius* subsp. salivarius NCTC 8618, *S. equi* subsp. zooepidemicus (isolated from a clinical sample), *S. suis* NCTC 10234, *S. dysgalactiae* NCTC 4669, and *S. iniae* ATCC 29178. Other bacterial species used were *Micrococcus varians* ATCC 15306, *Aerococcus viridans* ATCC 11563, *Lactococcus lactis* subsp. lactis ATCC 19435, *Vagococcus salmoninum* NCFB 2777, *Enterococcus faecalis* IFPL 383, *Enterococcus durans* NCFB 596, and *Pedicoccus acidilactici* ATCC 33399. *E. coli* “sure” cells and the plasmid pBluescript II SK+ used for cloning were supplied by Stratagene.

S. iniae cultures were prepared by growing the cells aerobically at 37°C and shaking at 150 rpm in brain heart infusion broth or in a basal medium composed of tryptone (2%), meat extract (1.6%), yeast extract (1.2%), K2HPO4...
onto a Novapack C 18 column. An HPLC mobile phase of acetonitrile-water encoding the lactate oxidase from assayed with three different probes: two biotin oligonucleotide primers labelled with the Sequenase version 2.0 kit (U.S. Biochemicals) were digested with HindIII-digested DNA from \textit{A. viridans} (25), and a 300-bp biotin-labelled product (positions 1081 to 1381 bp) obtained from \textit{A. viridans} DNA PCR amplification using these primers. Prehybridization and hybridization were performed at 60°C for 3 h in a solution of 5× SSC (1× SSC is 0.15 M NaCl plus 0.01 M sodium citrate) and 0.1% sodium dodecyl sulfate (SDS). The labelled probe was used at a concentration of 20 ng/ml. Washes were performed at 65°C for high stringency (0.5× SSC-0.1% SDS). Hybridized DNA was detected with the CDP-Star procedure (Boehringer Mannheim) using a 1:10,000 dilution of streptavidin-peroxidase conjugate.

PCR amplifications were performed in 100-μl reaction volumes containing 150 ng of each oligonucleotide (primers FWL and RVL), 1 mM each (deoxynucleoside triphosphate), 1 U of Taq polymerase (Biolog) and approximately 25 ng of template DNA in 1× reaction buffer. The amplification was carried out in a PT-100 thermal cycler (MJ Research, Inc.) using 30 cycles of denaturation for 1 min at 92°C, annealing for 1 min at 50°C, and extension for 2 min at 72°C. The first extension period for the final extension steps was held for 5 min.

\textbf{HPLC analysis of lactate.} \textit{S. iniae} cells used in these assays were previously grown overnight in basal medium supplemented with 20 mM L-lactate and centrifuged and subsequently washed with 50 mM phosphate buffer, pH 7.5. The high-pressure liquid chromatography (HPLC) bacterial samples were removed from the medium by centrifugation at 8,000 × g for 5 min and were filtered before use. Lactate determination was carried out according to the method of Bleiberg et al. (2). Lactate was derivatized with 2-bromoacetonitrile and was detected at 242 nm by HPLC with a Waters model 610DPA996 chromatograph equipped with a data analysis Millenium 2010. The samples (15 μl) were injected onto a Nova pack C 18 column. An HPLC mobile phase of acetonitrile-water (30:70, vol/vol) was used at a flow rate of 1 ml/min.

\textbf{DNA manipulation.} Chromosomal DNA from \textit{S. iniae} was partially digested with HindIII, and DNA fragments (between 3 and 10 kb) were ligated into HindIII-digested \textit{pBluescript II SK}(+) to generate a genomic library. \textit{E. coli} sure cells were transformed with 5 μl of the ligation mixtures according to procedures outlined by Stratagene, and the transformants were initially screened on HII-AMP plates containing isopropyl-β-D-thiogalactopyranoside (IPTG) and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal).

\textbf{Screening of lactate oxidase-positive clones.} Lactate oxidase-detecting plates were prepared by the method of Buechner and Frank (4). \textit{S. iniae} cells were able to grow on basal medium with 0.2% L-lactate and centrifuged and subsequently washed with 50 mM phosphate buffer, pH 7.5. The high-pressure liquid chromatography (HPLC) bacterial samples were removed from the medium by centrifugation at 8,000 × g for 5 min and were filtered before use. Lactate determination was carried out according to the method of Bleiberg et al. (2). Lactate was derivatized with 2-bromoacetonitrile and was detected at 242 nm by HPLC with a Waters model 610DPA996 chromatograph equipped with a data analysis Millenium 2010. The samples (15 μl) were injected onto a Nova pack C 18 column. An HPLC mobile phase of acetonitrile-water (30:70, vol/vol) was used at a flow rate of 1 ml/min.

\textbf{Biotransformation of lactate by \textit{S. iniae} cells.} Preinduced \textit{S. iniae} cells were able to grow on basal medium with 0.2% L-lactate as their energy source, reaching 3 × 10^8 CFU/ml after 20 h of incubation. Utilization of L-lactate by \textit{S. iniae} cells was also determined by HPLC analysis by measuring the decrease of lactate in basal medium supplemented with this compound at 20 mM. When \textit{S. iniae} cells were grown under aerobic conditions on this medium, lactate (retention time of 3.15 min) decreased to 8 mM after 12 h of incubation (representing only 40% of the original amount). Simultaneously to the lactate disappearance, a compound (retention time of 9.233 min) accumulates and is probably related to one of the breakdown products of lactate metabolism.

Lactate oxidase enzyme activity in \textit{S. iniae} was initially assayed by growing it on basal medium plates containing 0.2% L-lactate, ABTS, and horseradish peroxidase. When grown aerobically under these conditions, \textit{S. iniae} yields a purple pigmentation on the lactate medium, due to hydrogen peroxide production as a result of lactate oxidation. When 1% glucose was added to lactate plates, no color change was observed, indicating an inhibition of lactate oxidation by this enzyme.

In order to investigate the role of lactate oxidase in this bacterium, the effects of various concentrations of L-lactate (between 0.1 and 0.5%) on the growth of \textit{S. iniae} in BHI broth were assessed. Lactate concentrations below 0.2% had no apparent effect on the growth (data not shown), but at 0.25 or 0.3% lactate, the lag phase was observed to increase to 6 and 12 h, respectively (Fig. 1). Lactate at 0.4 and at 0.5% produced an inhibitory effect on the growth rate of \textit{S. iniae} over 72 and 96 h, respectively. These data suggest that lactate concentrations higher than 0.3% had an inhibitory effect on \textit{S. iniae} cell growth.

\textbf{Cloning of \textit{let} genes.} Two clones containing the \textit{S. iniae letO} genes were isolated from 6,680 \textit{Ap} \textit{E. coli} recombinants, exhibiting clear lactate oxidase activity on AMP plates containing 1% lactate and 0.2% L-lactate as the energy source, reaching 3 × 10^8 CFU/ml after 20 h of incubation. Utilization of L-lactate by \textit{S. iniae} cells was also determined by HPLC analysis by measuring the decrease of lactate in basal medium supplemented with this compound at 20 mM. When \textit{S. iniae} cells were grown under aerobic conditions on this medium, lactate (retention time of 3.15 min) decreased to 8 mM after 12 h of incubation (representing only 40% of the original amount). Simultaneously to the lactate disappearance, a compound (retention time of 9.233 min) accumulates and is probably related to one of the breakdown products of lactate metabolism.
L-lactate, ABTS, and horseradish peroxidase under aerobic conditions. The plasmids isolated from these clones each contained an identical 4-kb DNA insert designated pGR002. No color change was observed when the control *E. coli* pBluescript SK-transformed cells were grown on the medium containing lactate under the same conditions.

Sequence analysis of *S. iniae* lct genes. The nucleotide sequence of the *S. iniae* DNA fragment from pGR002 contains four open reading frames (ORFs) whose codon usage was in accordance with the codon preference observed for streptococcal genes (30). The nucleotide sequences of ORF3 and ORF4, which correspond to the lactate metabolism genes, were designated *lctP* and *lctO*, respectively.

lctP starts at an ATG at position 1113 and potentially encodes a protein of 474 amino acids with a molecular mass of 52,500 Da. The deduced amino acid sequence of this protein (Fig. 2) reveals a significant homology with l-lactate permease from *E. coli* (6) and *Haemophilus influenzae* (11). Likewise, a hydrophobicity plot indicates that the *lctP*-encoded protein is likely a transmembrane protein.

lctO starts at an ATG at position 2781 and potentially encodes a polypeptide of 398 amino acids with a molecular mass of 44,700 Da. A search in the GenBank and EMBL databases revealed a high similarity (200 identical and 34 conserved residues) to the l-lactate oxidase from *A. viridans* (24). No significant level of similarity was found, however, between the *S. iniae* *LctO* protein and the l-lactate dehydrogenases (LDHs) from *S. mutans* (9), *Streptococcus bovis* (32), and *L. lactis* (21) or other allosteric and nonallosteric NAD-linked LDHs from several gram-positive bacteria (34). Moreover, the highly conserved amino acid sequence (V-X-G-S-G-T-S-L-D-T-A-R-F-R) in the substrate-binding site of NAD(H)-linked LDH from lactic bacteria (14, 18) was not found in *S. iniae* LctO protein. The conserved sequence G-X-G-X-X-G, which is characteristic of a βαβ fold involved in the binding of NAD(H) of LDHs, is also absent from this protein, indicating that LctO from *S. iniae* does not belong to the LDH protein family. The deduced amino acid sequence of LctO shows, however, a significant identity (54.8, 53.5, and 59%, respectively) with NAD-independent LDH of *E. coli* and *H. influenzae* (6, 11) and with glycolate oxidase of spinach (29) (Fig. 3). Compared to the other flavin mononucleotide (FMN)-dependent enzymes so far sequenced, LctO shows significant homology to the l-lactate 2-monooxygenase of *Mycobacterium smegmatis* (13) and l-(+)-lactate dehydrogenase (cytochrome b₂) of *Saccharomyces cerevisiae* (20). A striking feature of the members of this family of l-α-hydroxyacid-oxidizing flavoproteins is the six conserved
Crude extracts prepared from E. coli “sure” cells carrying pGR002 grown in BHI broth or BHI broth-lactate showed similar l-lactate oxidase activity values (Table 1). No activity of FDP-activated NAD-dependent LDH was detected in E. coli (pGR002) extracts, indicating that the lctO gene on pGR002 encodes for l-lactate oxidase and that the production of this enzyme in E. coli (pGR002) was constitutive.

Analysis of the purified lactate oxidase by SDS-polyacrylamide gel electrophoresis showed a unique band migrating with an Mr of 48,000 Da, which agrees with the value calculated from the amino acid sequence when the 3-kDa N-terminal fusion peptide is added. This shows that the cloning and overexpression of S. iniae lactate oxidase in pTrHisA E. coli cells allows the simple and rapid purification of the enzyme, facilitating its downstream characterization.

DISCUSSION

NAD-linked LDHs are a wide group of enzymes which have been well characterized in lactic bacteria (9, 14, 18, 21) as well as in other bacterial groups (12, 26, 34). In contrast, little is known about the independent NAD-linked LDHs. These enzymes are more important to the survival of catalase-positive organisms, where they enable the bacteria to use lactate as a carbon source, than to the survival of streptococci and other lactic acid bacteria, in which the function of these enzymes is still unclear (12). The little work done on this type of NAD-independent LDHs established that most of them are flavin-dependent enzymes which use L-lactate as a substrate, transforming it to pyruvate. In addition, there are at least two types of flavin enzymes which oxidize L-lactate and utilize molecular oxygen as the electron acceptor: lactate 2-monooxygenase (EC 1.13.12.4) and lactate oxidase (8, 13). In contrast, little is known about the independent NAD-linked LDHs. These enzymes are not responsible for the oxidation of lactate to pyruvate but do not affect the activity of LDH but does not affect the activity of E. coli LDH (21).

Sequencing data from the S. iniae genes on pGR002 revealed the existence of two genes, lctP and lctO, which appear to encode a lactate permease and a lactate oxidase, respectively. The identity of the lctO gene was established from the comparison of the amino acid sequence of the LctO protein with the amino acid sequence of lactate oxidase from A. viridans (51% identity and 69% similarity) and by the expression of the lacZ gene in E. coli. LctO protein also shows significant similarity with other flavin-dependent enzymes which use flavin-containing proteins (6) and that all use D- and/or L-lactate as a substrate, transforming it to pyruvate. In addition, there are at least two types of flavin enzymes which oxidize L-lactate and utilize molecular oxygen as the electron acceptor: lactate 2-monooxygenase (EC 1.13.12.4) and lactate oxidase (8, 13). In this study, we report a molecular approach useful for the detection of the lactate oxidase gene in, at least, bacteria phylogenetically related to A. viridans.

Sequencing data from the S. iniae genes on pGR002 revealed the existence of two genes, lctP and lctO, which appear to encode a lactate permease and a lactate oxidase, respectively. The identity of the lctO gene was established from the comparison of the amino acid sequence of the LctO protein with the amino acid sequence of lactate oxidase from A. viridans (51% identity and 69% similarity) and by the expression of the lactate oxidase activity from S. iniae cloned on pGR002 in E. coli. LctO protein also shows significant similarity with other flavin-dependent enzymes which use L-lactate as a substrate.

TABLE 1. Activities of NAD-dependent LDH and lactate oxidase in crude extracts from S. iniae and E. coli

<table>
<thead>
<tr>
<th>Organism</th>
<th>Growth substrate</th>
<th>LDH*</th>
<th>Sp act (mU/mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NADH pyruvate</td>
<td>NAD</td>
<td>Lactate oxidase</td>
</tr>
<tr>
<td>S. iniae</td>
<td>BHI broth</td>
<td>1,800</td>
<td><3</td>
</tr>
<tr>
<td></td>
<td>Glucose (1%)</td>
<td>1,930</td>
<td><2</td>
</tr>
<tr>
<td></td>
<td>Lactate (0.2%)</td>
<td>1,200</td>
<td><1</td>
</tr>
<tr>
<td></td>
<td>Lactate-glucose</td>
<td>1,900</td>
<td><2</td>
</tr>
<tr>
<td>E. coli(pGR002)</td>
<td>BHI broth</td>
<td><1</td>
<td>ND*</td>
</tr>
<tr>
<td></td>
<td>BHI broth-lactate</td>
<td><1</td>
<td>ND</td>
</tr>
</tbody>
</table>

* FDP-stimulated LDH enzymatic activity (FDP activates the streptococcal LDH but does not affect the activity of E. coli LDH (21)).

* Lactate at 0.2% was added to the minimal (1%) glucose medium.

* ND, not determined.

FIG. 3. Alignment of S. iniae lactate oxidase (LctO) to other FMN-specific flavoproteins, including the NAD-independent LDH 1-lactate from E. coli (LctDHc) and H. influenzae (LctDHh), 1-lactate oxidase from A. viridans (LctOAv), and glycolate oxidase of spinach (GliOXSo). Residues in LctO identical with respect to compared proteins are in bold, and the percentages of similarity to S. iniae lactate oxidase are also indicated. The six conserved amino acid residues required for flavin binding and enzymatic catalysis of this family of enzymes are indicated by asterisks.

Amino acid residues required for flavin binding and enzymatic catalysis (22), which were also present in the amino acid sequence of LctO (Fig. 3).

Enzyme assays and effect of glucose on enzyme activity. Crude extracts prepared from S. iniae grown in BHI broth or media containing 1% glucose show high levels of NAD-linked LDH activity with pyruvate and NADH (Table 1). This is dependent on FDP, but no significant activity is observed when L-lactate and NAD are used as substrates. This is not surprising because the FDP-activated LDH of many streptococci react only weakly with lactate (12). No lactate oxidase activity was detected in these extracts. However, the extracts prepared from the S. iniae cells grown on 0.2% lactate showed significant lactate oxidase activity. According to the results obtained from the growth on lactate medium plates, extracts prepared from S. iniae grown on lactate plus glucose (1%) show no lactate oxidase activity (Table 1). These results indicate that glucose or its metabolism can negatively affect the activity of LctO and/or the maintenance of L-lactate inside the cell.
a substrate (e.g., NAD-independent LDH and 1-lactate 2-monooxygenase) and with other enzymes of the family of FMN-dependent α-hydroxyacid-oxidizing enzymes, such as glycolate oxidase. There are, altogether, 45 totally conserved positions among the six known protein sequences present in the S. iniae enzyme. On the basis of these features, the lactate oxidase of S. iniae can be considered a new member of this enzyme family.

Under aerobic conditions, S. iniae is able to use lactate by expressing an inducible enzymatic system which involves the activity of lactate oxidase (Table 1). This enzyme is repressed, however, by the presence of high concentrations of glucose in the medium (Table 1). Lactate oxidase could be important as a mechanism to assimilate lactate as an energy source in the absence (or at low concentrations) of glucose. At high glucose concentrations or in BHI broth, lactate oxidase activity was not found, and although lactate is formed under these conditions, the cells are unable to use it. It is generally recognized that the main activity of lactic acid bacteria is the conversion of carbohydrates to lactate. At the end of the fermentation process, the presence of high concentrations of glucose in the medium and hydrates to lactate. At the end of the fermentation process, some lactate accumulation to high concentrations in the medium and

REFERENCES