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The microbial community compositions of surface and subsurface marine sediments and sediments lining
burrows of marine polychaetes and hemichordates from the North Inlet estuary (near Georgetown, S.C.) were
analyzed by comparing ester-linked phospholipid fatty acid (PLFA) profiles with a back-propagating neural
network (NN). The NNs were trained to relate PLFA inputs to sediment type outputs (e.g., surface, subsurface,
and burrow lining) and worm species (e.g., Notomastus lobatus, Balanoglossus aurantiacus, and Branchyoasychus
americana). Sensitivity analysis was used to determine which of the 60 PLFAs significantly contributed to
training the NN. The NN architecture was optimized by changing the number of hidden neurons and calcu-
lating the cross-validation error between predicted and actual outputs of training and test data. The optimal
NN architecture was found to be four hidden neurons with 60-input neurons representing the 60 PLFAs, and
four output neurons coding for both sediment types and worm species. Comparison of cross-validation results
using NNs and linear discriminant analysis (LDA) revealed that NNs had significantly fewer incorrect
classifications (2.7%) than LDA (8.4%). For the NN cross-validation, both sediment type and worm species had
3 incorrect classifications out of 112. For the LDA cross-validation, sediment type and worm species had 7 and
12 incorrect classifications out of 112, respectively. Sensitivity analysis of the trained NNs revealed that 17 fatty
acids explained 50% of variability in the data set. These PLFAs were highly different among sediments and
burrow types, indicating significant differences in the microbiota.

Natural microbial communities are complex assemblages
of organisms composed of a variety of different physiological
groups of bacteria, archaea, and microeucaryotes, including
fungi, algae, and protozoa. Recent molecular biological studies
have shown that the assemblage of organisms present in an
environmental sample can contain thousands of distinct bio-
types of bacteria (39, 40) and that many of these organisms
represent undescribed microbial lineages, some of which lack
even a single representative species available in pure culture
(4). This complexity is further compounded by the high spatial
and temporal variability of species represented in many natural
communities (1, 7) and by the still-open question of what
proportion of the microscopically observable assemblage of
organisms is viable or even metabolically functional (10, 25, 27,
42). The characterization of natural microbial communities is
clearly a difficult problem. Many molecular biological methods
for community analysis are either very time consuming, such as
the construction and screening of clonal libraries (4, 13, 19), or
yield an index of community composition that does not reveal
organism taxonomic affiliations without additional analysis,
such as denaturing gradient gel electrophoresis (14, 30, 31, 36).
There is a clear need for methods that can be used to rapidly
and accurately examine microbial community composition.
Ideally, such methods would include all (or at least most)
microbial domains and produce a standardizable community

profile, allowing comparisons across different sample types and
facilitating the development of broad hypotheses concerning
microbial community dynamics.

One approach to microbial community characterization that
has been successful in a wide variety of applications (e.g., those
described in references 5, 6, 11, 15–17, 20, 32, 34, 38) is phos-
pholipid fatty acid (PLFA) analysis (15). Phospholipids are
structural components of all biological membranes. These
compounds have no storage function and thus represent a
consistent fraction of cell mass. They also degrade quickly
upon an organism’s death, and current extraction and deriva-
tization methods permit recovery of PLFAs exclusively from
living organisms (41). Extraction and subsequent analysis by
gas chromatography and mass spectroscopy provide precise
resolution, sensitive detection, and accurate quantification of
a broad array of PLFAs. Analyses can be performed rapidly
and efficiently, and each yields a profile composed of numerous
PLFAs defined on the basis of compound structure and the
quantity of each compound present in the sample. Different
PLFA classes and specific molecules are produced by bacteria
and eucarya, allowing both domains to be examined through
the same analysis. The PLFA profile obtained thus constitutes
a “fingerprint” of the living bacterial and microeucaryotic mi-
crobial community and reflects its species composition. Com-
parisons across sample types are simplified by normalizing the
quantity of each PLFA to the total recovered, expressing the
result in terms of moles percent (mol%) PLFA. One drawback
of the PLFA analysis is that archaea are not represented in the
analysis since their membrane lipids employ ether rather than
ester bonds. Nonetheless, PLFA profiles can be used to char-
acterize microbial community compositions and provide useful
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information on the dynamics of viable bacteria and microeu-
caryotes.

Comparing PLFA profiles of microbial communities is often
complicated by variability in the types and quantities of com-
pounds present in replicate samples from a given sample site.
This, together with the complexity of the PLFA profiles, con-
stitute substantial challenges to our ability to quantitatively
compare microbial community compositions by this approach.
Previous studies have employed cluster analysis and principal
components analysis (PCA) to group-like samples (37) and to
determine which PLFAs are most diagnostic for the groups
defined (11, 20, 23, 36, 37). There are two problems with these
approaches: (i) they do not account for the nonlinear nature of
biological data which is due to inherent variability, and (ii) they
do not permit details of the profiles to be conveniently exam-
ined. An approach that provides the advantages of cluster
analysis and PCA while accounting for the nonlinear nature of
the biological data and facilitating a more detailed profile
examination would be very advantageous.

Artificial neural networks (NNs) provide a useful tool for
recognizing patterns in complex, nonlinear data sets such as
those associated with PLFA profiles. NNs are particularly ad-
vantageous over conventional statistical methods because they
can deal with the inherent variability associated with biological
data. NNs are constructed by using computer software and
consist of layers of neurons that make independent computa-
tions and pass on their outputs to other neurons (33). Each
neuron in a layer is connected to neurons in the next layer so
that the output of each neuron affects the activation of all
neurons to which it is connected. Neurons are adaptable, and
through the process of learning from examples, store knowl-
edge and make it available for use (2). In a training technique
called back propagation (35), a pattern is presented to an input
layer of a network and the network produces output based on
the sum of the weighted inputs. When the pattern of the output
layer is compared to target values, the errors between them are
computed. An error function is used to readjust the weights of
each neuron. The adjusted weights of a trained network can be
used to recognize patterns such as those in PLFA profiles of
microbial communities and to provide information on func-
tional relations between components of a profile and target
values. For example, sensitivity analysis of the adjusted weights
can be used to determine the relative contribution of individual
input neurons (i.e., PLFA molecules) to target values (9).

The focus of this study was to investigate the utility of NN
for interpreting complex data, such as PLFA profiles of micro-
bial communities in surface and subsurface nearshore sedi-
ments and in the linings of burrows of three species of marine
polychaetes and hemichordates. We compared results obtained
by this approach with those obtained by conventional PCA and
linear discriminant analysis (LDA). Sensitivity analysis of the
trained NNs identified which input PLFAs significantly con-
tributed to training the NNs.

MATERIALS AND METHODS

Source of PLFA profiles analyzed. PLFA data used in our analyses were from
a previous study of marine sediment microbiota by Steward et al. (37). This study
should be consulted for sample site descriptions and significant features of the
sediments sampled. Briefly, sediment samples collected for the study were 10
matched sets for each of three worm species, with each set including one worm
burrow sediment sample, one surface sediment sample, and one subsurface
sediment sample. Surface sediments were collected from approximately the top
centimeter of sediment near but not adjacent to the worm burrows. Subsurface
sediment samples were taken approximately 10 to 20 cm deep, near but not
adjacent to worm burrows. Sediments were scraped from the linings of burrows
built by the capitellid polychaete Notomastus lobatus and the hemichordate
Balanoglossus aurantiacus by using sterile spatulas. Segments of tubes con-
structed by the maldanid polychaete Branchyoasychus americana were recovered

intact. Large macrofauna were excluded from all samples. The samples were
placed in sterile Whirlpack bags and immediately frozen on dry ice and then
transferred to 280°C pending PLFA extraction and analysis as described by
Steward et al. (37). This sample set included 90 total samples, each yielding a
profile of 60 different fatty acids. Forty-two PLFAs accounted for 93 to 97% of
the total number of PLFAs in each sample (37). The balance was made up of
low-abundance compounds. Characterization of the sample set by PCA showed
that monounsaturated fatty acids, branched saturated fatty acids, and PLFA
10me16:0 are important components of the sediment microbial communities
(37).

Data for the NN and LDA. The complete input data set consisted of 89 PLFA
profiles (one sample was lost during processing) and 23 randomly generated
PLFA profiles which served as controls. Each PLFA profile consisted of 60
PLFAs. For NN and sensitivity analysis, the entire data set was normalized, with
a minimum value of the data set being 0.1 and a maximum value of 0.9 (26). For
LDA, the data were normalized by an arcsine transformation.

Output data for sediment type and worm species were coded as four-digit
binary numbers. The first two digits refer to the worm species and the next two
digits refer to sediment type. The worm species were coded 00, 10, 01, and 11,
corresponding to the profiles of marine worms B. aurantiacus, B. americana, and
N. lobatus and to randomly generated profiles, respectively. The sediment types
were coded 01, 00, 10, and 11, corresponding to surface, burrow, and subsurface
sediment profiles and randomly generated profiles, respectively.

Cross-validation scheme. To evaluate the predictive power of the NN and
linear discriminant analyses, we employed the following cross-validation scheme:
the order of the data was randomized, 90% of the data were used to train the NN
and LDA, and the remaining 10% were used to test NN and LDA performance.
Correct and incorrect classifications were recorded. The above scheme was
repeated 10 times for each cross-validation.

Sensitivity analysis. The relative importance of each PLFA to predict the
target values was calculated by performing sensitivity analysis on the trained NN
(26). In this study, the sensitivity of an output parameter, Outj51,2, ... , nj (there are
nj output parameters), to an input parameter, Ini51, 2, ... ,ni (there are ni input
parameters), was defined as the normalized ratio between variations caused in
Outj by variations introduced in Inj and is represented by the following equa-
tions:

NSi, jc 5 ~dOut j,c /dIni, c!~Ini, c/Out j,c!

Si 5 @Sj51,2, ..., nj; c51,2, ..., nc (NSi, jc!]/@Si51,2, ..., ni; j51,2, ..., nj; c51,2, ..., nc (NS1, jc!] (1)

where i 5 1,2, ..., ni (input index), j 5 1,2, ..., nj (output index), and c 5 1,2, ..., nc;
(sample [case] index). The normalized sensitivity for PLFA profile c, NSi,jc was
calculated for every combination of input, i, and output parameters, j, and for
every PLFA profile (there are nc profiles). The overall sensitivity to an input, Si,
was determined by taking the average over all 112 PLFA profiles and all four
binary outputs used to classify them, which corresponds to a total of 26,880
(112 3 4 3 60) partial sensitivity values. Finally, the sensitivity values obtained
are represented as relative values, calculated as a percent value of the sum of all
sensitivities (equation 1, Si).

Phospholipid fatty acid nomenclature. Fatty acids are designated A:BvC,
where A is the total number of carbon atoms, B is the number of double bonds,
and C is the position of the double bond from the aliphatic end of the molecule.
The geometry of this bond is indicated with a “c” for cis and a “t” for trans. The
prefixes “i” and “a” refer to iso and anteiso terminal methyl-branching, respec-
tively (24). Mid-chain methyl branches are designated by “me” preceded by the
position of the methyl group from the acid end of the molecule. Cyclopropyl fatty
acids are designated by “cy.”

Statistical software. The NN and sensitivity analysis software were imple-
mented in BrainCel version 3.0 (Promised Land Tech.) and Matlab version 5.2
equipped with the NN tool box (MathWorks Inc.). For NN analysis, the logsig
equation, logsig(x) 5 1/(1 1 e2x), was used as a transfer function and error back
propagation was used to optimize the connection weights. Full interconnection
between the layers was used. Learning and momentum rates are self-adjusting in
Matlab and BrainCel. The input and output architecture of the NN consisted of
60 input neurons representing the 60 PLFAs and four-output neurons coding for
both sediment types and worm species. In order to minimize the effective number
of degrees of freedom in the network, training was stopped when the error
measured with independent test data started to increase (9). This criterion was
also used to select the optimal number of hidden neurons (9). LDA was con-
ducted by the procedure DISCRIM (prior probabilities equal, covariance
matrix pooled), chi-square was conducted by the procedure FREQ, and Ken-
dall’s coefficient of concordance was conducted by the procedure CORR
KENDALL in the SAS program (release 6.11; SAS Inc., Cary, N.C.). Cross-
validation results and the Student t tests were tabulated by MS Excel 98 (Mi-
crosoft Inc., Redmond, Wash.) on Macintosh 8.6 or MS Windows 98 operating
systems.

RESULTS AND DISCUSSION

Optimization of the NN. The effects of architecture on the
predictive abilities of NNs were determined by changing the
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number of hidden layer neurons in NNs and calculating the
cross-validation error (sum of squared deviations) of predicted
and actual outputs of training and test data (Fig. 1). The same
cross-validation scheme was used as outlined in Materials and
Methods. Optimization of the NN was necessary to prevent the
possibility of “overfitting” the data (9). Overfitting the data
decreases the performance of an NN, making it unable to
generalize predictions. The optimal number of hidden neurons
for the NN was found to be four (Fig. 1). Hence, the optimal
architecture for the NN with this data set was 60 input neurons,
four hidden neurons, and four output neurons.

Cross-validation of microbial community structure analy-
sis. The LDA cross-validation results (Table 1) were signifi-
cantly different from those obtained by using NNs (Table 2;
p , 0.0001; the Student t test). LDA predictions had a com-
bined error of 8.5% (19 incorrect out of 224; Table 1) while
those of the NN had a combined error of 2.7% (6 incorrect out

of 224; Table 2), indicating that the NN was significantly more
accurate than the LDA. Table 1 shows that PLFAs were more
correctly associated with sediment types (93.8%) than with
worm species (89.3%), indicating that microbial community
compositions were more determinable by whether they were
from the surface, burrow, or subsurface than if they were from
a particular worm species (Table 1). Similar differences be-
tween the associations of PLFAs and sediment types or worms
species were not apparent when cross-validation was con-
ducted with NNs (Table 2).

Sensitivity analysis. The analysis of the sensitivity of indi-
vidual PLFAs to NN outputs was repeated with 10 separately
trained NNs to validate the rank order of the 60 PLFAs with
respect to their individual sensitivities. Chi-square tests of the
ranked order of the 60 PLFAs revealed that they are very
similar (p 5 0.98). Kendall’s concordance coefficient, which
provides the simultaneous association (relatedness) between
samples, was 0.99, indicating that the rank order was very
consistent.

Approximately 50% of the variation in the data set was
explained by 17 fatty acids (Fig. 2), indicating that certain
PLFAs, such as 16:1v7c and 18:1v9c (relative sensitivities of
5.3 and 3.8%, respectively), play more important roles in de-
termining the outputs of the NN than other PLFAs, such as
20:4v3 (sensitivity of 0.5%). Examination of these findings
with reference to those of Steward et al. (37) provide clues as
to why certain PLFAs explained more variability than others.
For example, PLFA 16:1v7c occurs at much higher concentra-
tions in microbial communities found in burrows and surface
sediments (14.3 6 3.5 mol% [mean 6 standard deviation] [n 5
60]) than those found in subsurface sediments (7.6 6 2.6 mol%
[n 5 29]). Hence, significant differences in the concentrations
of PLFAs between the sediment types as well as the low vari-
ability of the PLFA in each type are likely key factors used by
the NN to recognize patterns. Also, sediments containing high
concentrations of PLFA 18:1v9c are more often associated
with microbial communities of B. aurantiacus (3.2 6 1.1 mol%
[n 5 30]) or N. lobatus (3.3 6 0.6 mol% [n 5 30]) than B.
americana (2.3 6 0.5 mol% [n 5 29]). Presumably, the con-
centration of 18:1v9c was used by the NN to distinguish mi-
crobial communities of B. americana from those of the other
species. Conversely, PLFAs with low sensitivities, such as 20:
4v3 (sensitivity of 0.5%), did not significantly contribute to the
training of the NN because the concentrations between sedi-

FIG. 1. Effect of the number of hidden neurons on the cross-validation error.
The optimum value of neurons was found to be 4 (arrow), where the training
(closed circle) and testing (open circle) errors are the lowest and still similar.
Each circle is the mean of 10 separately trained NNs, and each error bar
represents the standard deviation of the mean.

TABLE 1. Cross-validation of microbial communities by LDA of arcsine-transformed PLFA dataa

Actual sample
type

Predicted no. of samples by:
Total no. of

samplesSediment type Worm species

Burrow Subsurface Surface Random B. aurantiacus B. americana N. lobatus Random

Sediment type
Burrow 23 4 1 28
Subsurface 1 24 25
Surface 1 36 37
Random 22 22

Worm species
B. aurantiacus 30 1 31
B. americana 3 23 1 27
N. lobatus 2 5 25 32
Random 22 22

a Approximately 90% of the data were used for LDA, and the remaining 10% of the data were used for cross-validation. The cross-validation was repeated 10 times;
each time, the order of the records used for LDA and cross-validation was randomized. Numbers in bold are correct predictions; numbers not in bold are incorrect
predictions. The total number of correct predictions by sediment type was 105 (93.8%); the total number of incorrect predictions was 7 (6.3%). The total number of
correct predictions for worm species was 100 (89.3%); the total number of incorrect predictions was 12 (10.7%).
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ment types (burrow, 0.3 6 0.4 mol% [n 5 30]; subsurface,
0.3 6 0.3 mol% [n 5 29]; surface, 0.3 6 0.1 mol% [n 5 30])
and worm species (B. aurantiacus, 0.4 6 0.3 mol% [n 5 30];
B. americana, 0.2 6 0.3 mol% [n 5 29]; N. lobatus, 0.3 6 0.1
mol% [n 5 30]) were not significantly different and/or too
variable for the NN to recognize patterns in the PLFAs.

These findings are also consistent with the more physiolog-
ical and organismal interpretations of Steward et al. (37). Both
16:1v7c and 18:1v9c are products of aerobic bacteria and
microeucaryotes (15) and would be expected to be more abun-
dant in the surface sediments and in the oxidized linings of the
burrows of N. lobatus and B. aurantiacus (37). Reduced sub-
surface sediments, as well as the more reduced tube sediments
of B. americana (37), would not be expected to harbor high
levels of aerobic organisms. In fact, many PLFAs contributing

strongly to the sensitivity of the NN analyses (Table 3) have
well-defined origins in the aerobic and anaerobic microbiota
(15, 37).

Distinguishing which of the input PLFAs are used to deter-
mine the outputs of a trained NN by sensitivity analysis en-
abled us to identify the major PLFAs associated with microbial
communities of worm burrows and sediment types. Steward et
al. (37) identified which PLFAs accounted for a significant
portion of the variance by using PCA. A significant portion of
the variability in both sensitivity analysis and PCA was attrib-
uted to PLFAs 16:0, 16:1v7c, and 18:1v9c (Table 3), indicating
that trained NN yielded some correspondence to the results
obtained by PCA (37). However, 18 of the 24 PLFAs were not
common to both analysis methods, indicating significant dis-
agreements between the methods. Since NNs are able to use

FIG. 2. Relative (bars) and cumulative (solid squares) sensitivities of an optimized NN to specific PLFAs. The graph represents 1 of the 10 sensitivity analyses
conducted. PLFAs are arranged in order of their importance to the prediction of target values. These PLFAs are listed in decreasing order of importance: (PLFAs 1
to 5) 16:1v7c, 16:0, 18:1v7c, 18:1v9c, 18:0, (PLFAs 6 to 10) 16:1v7t, cy17:0, 17:0, cy19:0(v7,8), 20:0, (PLFAs 11 to 15) 22:4v6, 10me16:0, 20:3v3, poly19, i16:0, (PLFAs
16 to 20) 17:1v8c/a17:0, 22:5v6, 16:1v5c, 17:1v6c, 10me18:0, (PLFAs 21 to 25) 16:1v13t, 18:3v3/Br17:1/i18:0, 22:6v3, 18:1v7t, i15:0, (PLFAs 26 to 30) 18:3v6/
10me17:0, 15:1v6c, Poly20, a15:0, 20:4v6, (PLFAs 31 to 35) i17:0, 22:5v3, br19:1, a16:0/16:1v9c, 10me14:0, (PLFAs 36 to 40) br17:1v7c, 16:2v6/br15:0, 20:5v3, 24:0,
Poly17, (PLFAs 41 to 45) 14:0, 22:0, 11me18:0, 20:2v6, 20:3v6, (PLFAs 46 to 50) 19:1v12c, Poly22, 20:1v7c, 19:1v8c, 18:2v6, (PLFAs 51 to 55) br17:0, 15:0, i14:0,
19:1v6c, 18:4v3/12me17:0, (PLFAs 56 to 60) 12me16:0, 20:1v9c, 20:4v3, mono F.A., br17:0.

TABLE 2. Cross-validation of microbial communities by a back-propagating NN of PLFA dataa

Actual sample
type

Predicted no. of samples by:
Total no. of

samplesSediment type Worm species

Burrow Subsurface Surface Random B. aurantiacus B. americana N. lobatus Random

Sediment type
Burrow 30 1 1 32
Subsurface 28 28
Surface 29 1 30
Random 22 22

Worm species
B. aurantiacus 29 1 1 31
B. americana 28 28
N. lobatus 1 30 31
Random 22 22

a Approximately 90% of the data were used to train the data and the remaining 10% were used for cross-validation. The cross-validation was repeated 10 times; each
time, the order of the records was randomized. Numbers in bold are correct predictions; numbers not in bold are incorrect predictions. The total number of correct
predictions for sediment and worm type was 109 (97.3%); the total number of incorrect predictions was 3 (2.7%).
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nonlinear associations among PLFAs to relate to target values,
such disagreements are to be expected. Another factor which
might contribute to these differences is that the PCA con-
ducted by Steward et al. (37) was based on 89 PLFA profiles
while the NN and sensitivity analysis were conducted on the
same 89 profiles plus an additional 23 randomly generated
PLFA profiles which served as controls for NN training.

The application of neural computing approaches to analyze
complex data is relatively new in microbiology. For example,
NNs have been used to identify the restriction enzyme patterns
of Escherichia coli O157:H7 (12), the pyrolysis mass spectra of
Mycobacterium tuberculosis complex species (17), the promoter
sites of E. coli (22), protein-DNA binding sites (29), fatty acids
of marine heterotrophic bacteria (8) and mycobacteria from
sputum samples (3), stable low-molecular-weight rRNA pro-
files (28), and nifH-specific binding patterns from denaturing
gradient gel electrophoresis analysis (31). The advantage of
using neural computing approaches is that they allow pattern
recognition that cannot be discerned by conventional statistical
methods (26). Sensitivity analysis of trained NNs yields in-
formation on which individual input neurons (in this study,
PLFAs) significantly contributed to the targeted outputs.

In summary, an optimized neural network was used to as-
sociate PLFA data of microbial communities to worm species
and sediment type. Cross-validation of the trained NNs and
LDA with independent test data revealed that NNs provided
better predictions than LDA. The relevant PLFAs for NN
prediction were identified by sensitivity analysis.
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