Molecular Characterization of the Iron-Hydroxamate Uptake System in \textit{Staphylococcus aureus}

GUILLERMO CABRERAa,† ANMING XIONG,‡ MICHELLE UEBEL, VINEET K. SINGH, and RADHESHYAM K. JAYASWAL*

Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, Illinois 61790-4120

Received 23 October 2000/Accepted 19 November 2000

To investigate iron uptake, a chromosomal locus containing three consecutive open reading frames, designated \textit{fhuC}, \textit{fhuB}, and \textit{fhuD}, was identified in \textit{Staphylococcus aureus}. Whereas the \textit{fhuC} gene encodes an ATP-binding protein, \textit{fhuB} and \textit{fhuD} code for ferriochrome permeases and thus resemble an ATP-binding cassette transporter. A \textit{fhuB} knockout mutant showed impaired uptake of iron bound to the siderophores but not of ferric chloride, suggesting that this operon is specific for siderophore-mediated iron uptake.

Iron is an essential element for the growth of living cells, and although abundant in nature, under aerobic conditions and at neutral or alkaline pH it is insoluble and thus is not readily available (12, 13). Moreover, in host tissues, iron remains tightly bound to high-affinity iron-binding proteins, such as ferritin, transferrin, lactoferrin, hemoglobin, and iron-sulfur proteins. Because only 10^{-18} M iron is in the free form (8, 12), a concentration not sufficient to sustain bacterial growth, bacteria have evolved various scavenging systems to acquire iron from the environment (6, 11). These systems utilize either cell surface molecules that make direct contact with the host iron-binding proteins (17, 19) or low-molecular-weight molecules, called siderophores, that show a higher affinity for iron than the host iron chelaters. The iron-siderophore transport mechanisms are well studied in gram-negative bacteria (6), particularly in \textit{Escherichia coli}, but are understudied in gram-positive bacteria, including \textit{Staphylococcus} spp.

Here we report the cloning and characterization of a ferriochrome uptake operon, \textit{fhu}, with three consecutive open reading frames (ORFs), designated \textit{fhuC}, \textit{fhuB}, and \textit{fhuD}. We also show that the \textit{fhuB} null mutation results in reduced ferriochrome uptake.

\textit{Staphylococcus aureus} strains were grown in tryptic soy broth or defined medium (21), whereas \textit{E. coli} was grown in Luria-Bertani broth with appropriate antibiotics. The iron-limited and iron-rich defined media were prepared by adding 10 μM dipyridyl (Sigma, St. Louis, Mo.) and 10 μM Fe(III), respectively (4). DNA isolation, cloning, and transformations were performed by standard methods (14, 16). DNA probes were labeled with the Prime-a-Gene labeling system (Promega, Madison, Wis.). The DNA restriction and modification enzymes were obtained from Promega. DNA sequences were determined with an ABI Prism 310 automated sequencer (Perkin-Elmer, Foster City, Calif.), and the sequence data were analyzed by BLAST (1).

The \textit{S. aureus} genome database at the University of Oklahoma (http://www.genome.ou.edu/staph.html) revealed the presence of a DNA fragment with strong homology to the \textit{fhuC} gene of \textit{Bacillus subtilis}. The partial \textit{fhuC} sequence was used as a probe to identify an operon in \textit{S. aureus} consisting of three consecutive ORFs (Fig. 1) with an array of GATAAT upstream sequences analogous to the so-called Fur box. The first ORF of this operon, \textit{fhuC}, is homologous to the \textit{fhuA} gene of \textit{B. subtilis} (58% identity; 76% similarity) and the genes encoding ATP-binding proteins of other bacterial iron transport systems. Based on a hydrophathy analysis that suggests a cytoplasmic location for this protein and its similarity to the ATP-binding proteins, the protein seems to belong to the family of the ATP-binding cassette transporters. The second and third genes of this operon are homologous to the \textit{fhuB} (43% identity; 67% similarity) and \textit{fhuG} (40% identity; 64% similarity) genes of \textit{B. subtilis}, respectively. They are similar to ferriochrome permeases of other bacteria and thus belong to the FecCD family of membrane transport proteins (17).

To determine the role of the \textit{fhu} operon, we constructed a mutation in the \textit{fhuB} gene as described earlier (22). A 6.7-kb \textit{HindIII} fragment containing the three reading frames was cloned in the vector pTZ18R (10). A 3.2-kb EcoRV fragment was deleted from this construct, and then a 1.5-kb kanamycin cassette was inserted at the unique \textit{KpnI} site of the \textit{fhuB} gene. The 4.8-kb \textit{HindIII} fragment with the disrupted \textit{fhuB} gene was subcloned into the \textit{HindIII} site of the shuttle vector pBR2 (3), which cannot replicate in gram-positive bacteria above the nonpermissive temperature. Approximately 10 μg of this construct was electroporated into \textit{S. aureus} RN4220 cells, and the transformants were selected on tryptic soy agar plates containing 100 μg of kanamycin/ml and 10 μg of chloramphenicol/ml. The transformants were then grown at 43°C, and the chloramphenicol-sensitive clones were checked by Southern blotting and PCR techniques for the replacement of the native \textit{fhuB} gene with the disrupted gene. The mutation in the \textit{fhuB} gene was subsequently transduced into \textit{S. aureus} 8325-4 with a phage 80a lyate using the method described by Novick et al. (15). To complement mutation in \textit{trans}, the 6.7-kb \textit{HindIII} fragment containing the entire \textit{fhu} operon was cloned into the pCU1 shuttle vector (2) and transferred into the \textit{fhuB} mutant strain.

* Corresponding author. Mailing address: Microbiology Group, Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120. Phone: (309) 438-5128. Fax: (309) 438-3722. E-mail: drjay@ilstu.edu.

† Present address: CEACA, UAQ, Centro Universitario, Queretaro, Qro. 76010, Mexico.

‡ Present address: Dept. of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305.
Iron uptake by *S. aureus* strain 8325-4, its *fhuB* mutant, and the *fhuB* mutant complemented with the native gene, were performed as described earlier with slight modifications (9, 17). Cells were grown overnight at 37°C in iron-free defined medium (iron in the medium was chelated by adding 100 μM dipyridyl), diluted in 50 ml of fresh iron-free defined medium, and grown to an optical density at 580 nm of 0.6 to 0.7. The cells were subsequently harvested and washed twice with transport buffer (1 g of KH₂PO₄, 2 g (NH₄)₂SO₄, 4 g of NaCl, 17.9 g of tricine, 5 mg of MgSO₄ · 7H₂O, 3 mg of CaCl₂, 5.7 mg of nitrilotriacetate, and 10 g of glucose in a total volume of 1 liter, pH 8.0). The cells were resuspended in transport buffer to an optical density of 1.0 at 580 nm. Radiolabeled iron purchased as ⁵⁹FeCl₃ in 0.1 N HCl from Amersham Pharmacia Biotech, Inc. (Piscataway, N.J.) [specific activity, 697 MBq/mg of Fe(III)] was used to prepare a 500-fold stock of siderophore (0.2 mM) to give a metal/ligand ratio of 1:10. A 5.0-ml cell suspension was placed in a 50-ml disposable tube to which labeled siderophore was added to a final concentration of 0.4 mM. Samples (0.5 ml) were taken out at specific time points (0, 5, 10, and 15 min) and filtered through presoaked 0.45-micrometer filters. The filters were washed with 20 ml of ice-cold transport buffer containing 20 nM FeCl₃ and air dried, and the radioactivity was counted with a Beckman scintillation counter. These experiments were performed in triplicate. The iron uptake studies were also carried out by adding ⁵⁹FeCl₃ to a final concentration of 0.04 mM to the same density of cells in the transport buffer as described above.

In these assays, the *fhuB* mutant strain showed an impaired ferrichrome-iron uptake compared to the wild-type bacterium (Fig. 2A). However, the *fhuB* mutant complemented with the wild-type gene was able to import iron-ferrichrome to the normal levels (Fig. 2A). In the studies involving radiolabeled FeCl₃ directly, the wild type, the *fhuB* mutant, and the complemented *fhuB* mutant strains acquired iron with roughly similar efficiencies (Fig. 2B), suggesting that the *fhu* operon is specific for ferrichrome-utilizing iron uptake. However, the overall growth kinetics of the mutant did not show any appreciable change compared to those of the wild-type bacterium whether grown in defined medium, defined medium lacking iron, or complex medium (data not shown). This might be supportive of the multiple reports of a very low requirement for iron in *S. aureus* growth (5, 7, 20).

Recently, Sebulsky et al. (18) reported a transposon Tn917 insertion mutant in *S. aureus* with impaired uptake of the ferric hydroxamate complexes. Further characterization of this mutant suggested that the transposon had inserted into the same chromosomal locus reported earlier (23) and characterized in this manuscript. Their transposon insertion mutant is in the *fhuG* gene (18), which is *fhuD* (the third ORF of the *fhu* operon) in our nomenclature. It is therefore important to note that mutations in both the permease homologues *fhuB* (present study) and *fhuD* (18) result in similar phenotypes of impaired iron hydroxamate uptake.

In conclusion, we have identified an *S. aureus* operon with three genes that constitutes a transport system which specifically utilizes siderophores to trap iron from the environment. Further characterization of the genes of this locus might help devise strategies to control iron metabolic pathways and in turn to design effective control mechanisms against this important human pathogen.
Nucleotide sequence accession number. The nucleotide sequence reported here has been submitted to GenBank under accession number AF132117.

We are thankful to Anthony Otsuka and Stephanie Coates for critical reading of the manuscript.

This work was supported by a grant from the National Institutes of Health-AREA to R.K.J.

REFERENCES