Natural Genetic Transformation of Clinical Isolates of *Escherichia coli* in Urine and Water

Markus Woegerbauer,1* Bernard Jenni,2 Florian Thalhammer,1 Wolfgang Graninger,1 and Heinz Burgmann1

Division of Infectious Diseases, Department of Internal Medicine I, University of Vienna, 1090 Vienna, Austria,1 and Novartis Pharma AG, 4002 Basel, Switzerland2

Received 2 August 2001/Accepted 8 October 2001

Transfer of plasmid-borne antibiotic resistance genes in *Escherichia coli* wild-type strains is possible by transformation under naturally occurring conditions in oligotrophic, aquatic environments containing physiologic concentrations of calcium. In contrast, transformation is suppressed in nitrogen-rich body fluids like urine, a common habitat of uropathogenic strains. Current knowledge indicates that transformation of these *E. coli* wild-type strains is of no relevance for the acquisition of resistance in this clinically important environment.

Horizontal gene transfer is a recognized process that allows the rapid spread of antibiotic resistance genes inside and outside of hospitals, thereby impeding antimicrobial chemotherapy (17). Resistance determinants are readily acquired and disseminated within and among bacterial populations by (i) conjugation, (ii) transduction, and (iii) transformation, virtually without barriers between species (6, 12). Natural genetic transformation is characterized by the uptake of free DNA by a recipient bacterium, its chromosomal integration or extrachromosomal stabilization, and its expression, which leads to a new phenotype (7, 11). Calcium appears to play a pivotal role for the development of bacterial competence, an inducible property of many bacterial species and a prerequisite for transformation, in both gram-positive and gram-negative bacteria (18, 19, 25). Laboratory strains of *Escherichia coli* were shown to be transformable by a nonphysiological Ca2+ concentration of 100 mM (9, 22). Recombination- and DNase-deficient laboratory strains are generally used, with a temperature shift from 0 to 37°C after the addition of free DNA (9, 22, 27). Such conditions are never encountered in the original biotope of *E. coli* (i.e., the mammalian gastrointestinal and urogenital tracts). Consequently, this species was not considered to be transformable in its natural habitats (11, 26). However, there have been indications that the induction of competence in *E. coli* is controlled physiologically rather than physicochemically (4), and natural transformation of laboratory strains of *E. coli* has been demonstrated to occur in river, spring, and mineral water (2) and in foodstuffs (1) but not yet in the body fluids of mammals. Our intention was to evaluate whether wild-type clinical isolates of *E. coli* were naturally transformable in fresh-water, as has already been reported for laboratory strains, and to evaluate the impact of transformation on the dissemination of antibiotic resistance genes under conditions of clinical significance.

Bacterial strains and plasmid DNA. Eight ampicillin-sensitive, nonpathogenic *E. coli* isolates from sputum or swab samples of the oropharynges of hospitalized patients with sinusitis or otitis were chosen at random without additional criteria of selection. In addition, we tested four pathogenic strains which were isolated from two patients with urogenital infections. From each patient, a single strain was isolated from feces (S 988 and S 1018) and from urine (U 988 and U 1018), all of which showed identical restriction fragment length polymorphism banding patterns. *E. coli* strain DH5α (number C2007-1; Clontech, Palo Alto, Calif.) was used as a control in each experiment. Supercoiled pUC18 (Roche, Vienna, Austria) and pGFP (Clontech number 6097-1) plasmid DNAs were purified by anion-exchange chromatography (Qiagen, Hilden, Germany).

Transformation assays. Transformation assays were performed as described by Sambrook et al. (22). Briefly, log-phase cells were harvested and the number of viable cells per milliliter (usually 108 cells/ml) was determined by agar plating of serial dilutions. The bacteria were washed with the selected water samples or CaCl2 solutions (0 to 100 mM), resuspended in 200 μl of the same solution, and incubated for 1 h (test range, 1 min to 72 h) at the appropriate temperature. Then, supercoiled pUC18 or pGFP plasmid DNA was added at various concentrations ranging from 1.25 ng/ml to 1.25 μg/ml and for different time periods (1 to 60 min). Most of the experiments were performed with DNA incubation for 10 min. A standard shift from 0 to 37°C was applied, usually for 10 min. After addition of 500 μl of Luria-Bertani broth, all samples were incubated at 37°C for 45 min, and 100 μl of the transformation mix was transferred onto Luria-Bertani agar plates containing ampicillin (100 μg/ml). The transformation frequency (TF) was established by calculating the ratio of the number of transformants per viable cell per milliliter (detection limit, 10−7). The transformation efficiency (TF) was calculated as the number of transformants per microgram of plasmid DNA applied in a volume of 1 ml. The mean number of
transfectants obtained during three transformation assays was used for calculation.

Transformation assays in human urine were performed as described above, with the exception that all incubations were performed at 37°C in human urine in order to mimic natural conditions. Void urine was collected from healthy volunteers and sterilized by filtration (Millex-GV; Millipore, Bedford, Mass.). For some experiments, urine was treated at 80°C for 10 min to inactivate the DNases. Ca2+ concentrations were measured with a calcium detection kit, 587-A, from Sigma (St. Louis, Mo.); pH was determined with pH indicator strips (Merck, Darmstadt, Germany). The bacteria were incubated in 1 ml of urine on a thermomixer for 24 h. They were then pelleted, washed with fresh pretreated urine, resuspended in 500 μl of urine, and incubated for another 4 h under vigorous shaking. After addition of plasmid DNA to 200 μl of the preincubation solution (final concentration, 125 ng/ml), the bacteria were incubated for 24 h. A 500-μl volume of fresh urine was then added, and bacterial growth was enabled for an additional 4 h. Transfectants were detected as described above.

Transformation in CaCl2 solutions and in mineral water. As is shown in Table 1, three (EC1, EC2, EC7) out of the eight nonpathogenic E. coli isolates persistently yielded transfectants upon application of the standard procedure. The other strains either were not transformable (EC3, EC6) or showed fluctuating transformation (EC4, EC5). All four pathogenic strains yielded transfectants in three consecutive experiments. EC1 always showed the highest number of transfectants. With this strain, competence could be induced with a CaCl2 concentration as low as 1 mM, but Tfs were always modest percentages of the values obtained with the laboratory strain DH5α (11% for 100 mM CaCl2, 3% for 50 mM, 1% for 10 mM). Transfectants could be induced with EC1 and DH5α by incubation in bottled, carbonized mineral water (Preblauer, Austria), which contained 2.9 mM Ca2+. No transfectants were observed when the strains were incubated in other mineral waters with lower Ca2+ contents, in Coca Cola, or in orange or multivitamin juice.

Additional parameters influencing transfectability. As is shown in Table 2, 1 min of incubation in CaCl2 was sufficient to generate transfectants, indicating that induction of competence is a rapid process. A steep rise in Tf was detectable after 5 min of incubation with EC1 and after 10 min with DH5α. With EC1, 1.25 ng of DNA/ml was sufficient to generate transfectants when it was incubated in CaCl2 at a concentration of 10 mM or higher. With 100 mM CaCl2 and 106 cells/ml, the Tf increased with rising DNA concentrations whereas the efficiency of DNA transfer remained constant, as one expects in a system not saturated with DNA. With DH5α (108 cells/ml), the Tf decreased with rising DNA concentrations, but the Tf essentially remained stable. If one assumes that wild-type and laboratory strains behave similarly in this scenario, what we observed may be explained by a surplus of plasmid molecules compared to the number of competent cells available in a DNA-saturated environment.

Transfectants could also be detected after temperature shifts from 25 to 37°C (but not with constant incubation at 25 or 37°C) with a minimum of 10 mM CaCl2. Unlike with DH5α, the number of EC1 transfectants did not increase along with

the concentration of calcium, indicating that the transformability of wild-type strains is more stringently controlled than that of the laboratory strain by the kind of temperature shift.

Transformation in human urine. No transformant was detected with any of the uropathogenic strains, nonpathogenic strains, or strain DH5α in urine (pH 6.8 to 7.5, heat inactivated and nontreated) with constant incubation at 37°C (Table 1). Agarose gel analysis of the pGFP plasmid indicated complete DNA degradation within 5 to 10 min in nontreated urine. Variations of the transformation protocol (i.e., incubation of E. coli strains on ice for 24 h prior to addition of plasmid DNA, heat shock at 0 to 37°C, and use of plasmid DNA concentrations of up to 1.25 μg/ml) also did not lead to the formation of transformants. A single positive transformation in one out of three experiments could be detected with DH5α (Tf 1.0 × 10⁶, Tf 1.7 × 10⁷ after DNA inactivation by heat) and the urine transfer was spiked with calcium (final Ca²⁺ concentration, 12 mM).

Relevance of different horizontal gene transfer mechanisms for the dissemination of antibiotic resistance. The transfer of antibiotic resistance genes in E. coli by conjugation in soil (3), protozoa (23), body fluids (13), and the intestine (16) has been reported and most probably plays a decisive role in the spreading of resistance genes in clinical settings (24). Concerning the phenomenon of transformation in body fluids, the data are scarce. Natural transformation of gram-positive pathogens like *Streptococcus pneumoniae* has been unequivocally demonstrated for humans (21) and mice (5, 20). The development of genetic competence and natural transformation have been shown for *Bacillus subtilis* in milk (29) and for *Streptococcus gordonii* in human saliva (15). Inhibitory effects of rumen fluid and ovine saliva on the development of the competence of *Streptococcus bovis* have also been described (14). Bauer et al. (1) have demonstrated E. coli Tf_S below 10^{−6} in milk. Recently, vesicle-mediated transfer of virulence genes has been reported, a process which may facilitate the dissemination of DNA fragments in DNase-rich environments like urine (28).

We have detected the transformation of *E. coli* wild-type strains in water at Ca²⁺ concentrations as low as 1 to 2.9 mM, which are readily available in mineral waters and body fluids (proximal ileum, 4.2 mM; urine, 5.9 mM; saliva, 2.3 mM) (10). However, transformants were not detectable in urine. DNA degradation severely impairs the uptake of free DNA in DNase-rich body fluids like urine, but an additional process functioning against transformation can be inferred. (i) A strong correlation has been found between the Tf₀ and the formation of poly-β-hydroxybutyrate (PHB)—calcium–poly-phosphate complexes, which are presumably channels for DNA transfer in the cytoplasmic membranes of *E. coli* cells (8). (ii) PHB synthesis is also a way to store carbon in an osmotically inert form when nitrogen becomes the limiting growth factor. (iii) Induction of competence preferentially occurs during starvation caused by a nutrient imbalance, i.e., when the C/N ratio is high (2, 11). Thus, the absence of transformation in urine may be due to the fact that *E. coli* grows initially in a nutrient-rich medium (>10⁹ CFU/ml) without the need for PHB synthesis. Under starvation conditions during stationary phase, a low C/N ratio in urine is expected. Neither condition is favorable for the induction of competence. The situation may be reversed in milk that contains an abundance of sugar, leading to a C/N ratio greater than 1 at starvation.

Conclusion. The transformability of *E. coli* (clinical isolates and laboratory strains) is restricted by the environmental conditions prevailing in its habitat. Although genetic transformation of *E. coli* may occur under natural conditions in aquatic, calcareous environments, urine suppresses the rate of transformation to below the detection limit. This observation indicates that natural transformation of *E. coli* wild types is most probably of no relevance for the acquisition of antibiotic resistance determinants in body fluids like urine. Resistant phenotypes may be spread predominantly by bacterial conjugation and vesicle-mediated transfer in clinical settings. However, we cannot rule out the occurrence of transformation in other...

TABLE 2. Parameters influencing transformation of *E. coli* wild-type and laboratory strains in water

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EC<sub>1</sub> (wild type)</th>
<th>DH<sub>5α</sub> (laboratory strain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of incubation in CaCl<sub>2</sub> (min)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.0 × 10<sup>−8</sup></td>
<td>2.4 × 10<sup>1</sup></td>
</tr>
<tr>
<td>5</td>
<td>2.0 × 10<sup>−7</sup></td>
<td>1.6 × 10<sup>1</sup></td>
</tr>
<tr>
<td>10</td>
<td>2.3 × 10<sup>−7</sup></td>
<td>1.8 × 10<sup>1</sup></td>
</tr>
<tr>
<td>30</td>
<td>5.3 × 10<sup>−7</sup></td>
<td>4.2 × 10<sup>1</sup></td>
</tr>
<tr>
<td>DNA concentration (ng/ml)<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>8.0 × 10<sup>−8</sup></td>
<td>6.4 × 10<sup>4</sup></td>
</tr>
<tr>
<td>12.5</td>
<td>3.8 × 10<sup>−7</sup></td>
<td>3.0 × 10<sup>4</sup></td>
</tr>
<tr>
<td>125<sup>c</sup></td>
<td>1.9 × 10<sup>−6</sup></td>
<td>1.9 × 10<sup>4</sup></td>
</tr>
<tr>
<td>Temp shift from 25 to 37°C</td>
<td>1.0 × 10<sup>−7</sup></td>
<td>8.0 × 10<sup>1</sup></td>
</tr>
</tbody>
</table>

^a A standard transformation protocol (22) was applied (100 mM CaCl₂, 125 ng of pUC18 DNA/ml, temperature shift from 0 to 37°C) unless otherwise stated. Results are means of values from triplicate experiments.
^b Tf, number of transformants per viable cell (×10⁹ cells/ml).
^c Zero indicates that results were below the limit of detection.
^d For EC1, 10⁶ cells/ml were used for this parameter.
^e With 10 mM CaCl₂, 100 ng of DNA/ml was used.
natural environments (e.g., mammalian intestine) or for other pathogroups of *E. coli*.

This work was supported in part by grants of the Austrian Federal Ministry of Health and Consumer Protection, BKA, the Österreichische Nationalbank, and the Austrian Society of Chemotherapy. We are grateful to Konstantin Schwarz for providing the pathogenic *E. coli* strains and the related restriction fragment length polymorphism data. We thank warmly Edith Mlynar and Tina Hausl for excellent technical assistance.

REFERENCES