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The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic
food web based on the consumption of organic carbon entrained from downwelling surface water or from
upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these
heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods
(denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct micro-
scopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic
zone of six different river sites that encompass a wide range of sediment metal loads resulting from large
base-metal mining activity in the region. There was no correlation between sediment metal content and the
total hyporheic microbial biomass present within each site. However, microbial community structure showed
a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups
(groups I, II, III, and IV) most closely related to �-, �-, and �-proteobacteria and the cyanobacteria, respec-
tively, were determined. The sediment metal content gradient was positively correlated with group III abun-
dance and negatively correlated with group II abundance. No correlation was apparent with regard to group
I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal
contamination and hyporheic microbial community structure. The information presented here may be useful
in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies
of metal effects on hyporheic microbial communities.

The hyporheic zone is a spatially and temporally dynamic
ecotone which provides connectivity between terrestrial,
groundwater, and lotic habitats (12, 31, 69, 72, 73). It lies
beneath the channel of a stream (46), often extending great
distances laterally in the subsurface, and is an essential part of
lotic ecosystems (22, 57, 59). The microbial transformations
of dissolved and particulate nutrients taking place in the hy-
porheic zone have been shown to influence both macroinver-
tebrate and algal assemblages and may play a role in the
productivity of riparian vegetation (4, 36, 58). Therefore, al-
terations in the hyporheic ecosystem that result in changes in
the resident microbial community structure may be translated
to higher trophic levels. In addition, alterations in the structure
of microbial communities may be a useful indicator of the
effects and extent of anthropogenic contamination. Previous
work in our laboratory has focused on describing the types and
seasonal dynamics of microorganisms in the hyporheic zone
(21). This investigation explores the effects of heavy-metal
contamination on hyporheic-zone microbial community struc-
ture.

Heavy metals contaminate numerous aquatic environments
worldwide as a result of large-scale mining and other activities
(49). Heavy metals reduce water quality and harm many eu-
karyotic organisms (13, 44, 49, 71). Alteration of streambed
geochemistry due to acid mine drainage and the introduction

of mine tailings into streams is well documented (for a review,
see reference 49); however, the resulting effects on hyporheic
microbial communities are poorly understood. Heavy-metal
contamination has been shown to alter the activity and com-
position of microbial communities in terrestrial ecosystems.
The majority of these studies have been conducted in systems
that were exposed to heavy metals via industrial activities (14,
42, 54, 68, 77), experimental manipulation (18, 28, 29, 41, 70),
or acid mine drainage (7, 8, 20, 48). Soils experimentally ex-
posed to increased levels of heavy metals tend to support
microbial communities with decreased fungus/bacterium ratios
(29), decreased archaeal abundance (64), increased levels of
metal tolerance (18), and decreased metabolic potential (40).

The Clark Fork River in western Montana has a legacy of
contamination with a mixture of metals from a large copper
mine near Butte, Mont. The mining activity in Butte removed
approximately 400 million m3 of rock from the subsurface,
90% of which was discarded as tailings (49). It is estimated that
2 million m3 of tailings have been dumped directly into Silver
Bow Creek, one of two headwater streams that merge to form
the Clark Fork River. The results of this contamination include
drastic changes in sediment and pore water geochemistry (76),
immediate to long-term effects on local biota (47), and a gra-
dient of elevated sediment metal concentrations which de-
creases logarithmically with distance and is projected to extend
up to 556 km downstream from Butte, Mont. (45, 49). Since
the metal contamination introduced into the Clark Fork River
came from an ore body that contained a complex mixture of
heavy metals, the resulting metal contamination gradient is
also comprised of a mixture of metals. Rather than attempt to
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determine the effects of individual metals on hyporheic micro-
bial communities, we have developed a contamination index
(CI) that encompasses the suite of the toxic metals present to
relate to measured microbial response variables. This ap-
proach increases the environmental relevance of the findings
and simplifies interpretation of the results based on microbial
community differences related to in situ metal contamination
as a whole.

Utilizing a suite of molecular techniques, including 16S
rRNA gene phylogenetic analysis, denaturing gradient gel
electrophoresis (DGGE), quantitative PCR (qPCR), and
phospholipid fatty acid analysis (PLFA), we present the first
investigation of the relationship between hyporheic microbial
community structure and the concentration of fluvially depos-
ited heavy metals in river sediments. The results demonstrate
that total microbial community composition and the abun-
dance of two specific phylogenetic groups were correlated with
the sediment metal content, while total bacterial biomass and
the abundance of two other phylogenetic groups were not.

MATERIALS AND METHODS

Study sites. Six different locations were sampled for this study (Fig. 1). These
sites were chosen from a comprehensive survey of streams in western Montana
(15) to encompass a range of sediment metal concentrations and other physical
characteristics such as average discharge, substratum type, and drainage area
(Table 1). The U.S. Geological Survey Montana stream-flow website (http://

waterdata.usgs.gov/mt/nwis/current?type�flow) was used to obtain general phys-
ical characteristics of each stream. The sampled reaches of each stream had
riparian vegetation dominated by alder, willow, and cottonwood groves, and
channel water flowed freely, unobstructed by any major debris or dams. Three
sites were located within the Clark Fork River watershed: Silver Bow Creek (SB),
a headwater tributary of the Clark Fork (third-order stream; lat. 46°06�28�, long.
112°48�17�; elevation, 4,912 ft); Clark Fork River at Gold Creek (GC) (fourth-
order stream; lat. 46°35�26�, long. 112°55�40�; elevation, 4,172.8 ft); and Clark
Fork River at Rock Creek (CF) (fourth-order stream; lat. 46°49�34�, long.
113°48�48�; elevation, 3,320 ft). The other three sites were the Little Blackfoot
River (LB), sampled near Garrison, Mont. (third-order stream; lat. 46°31�11�,
long. 112°47�33�; elevation, 4,344 ft); the Big Hole River (BH), sampled near
Glen, Mont. (fourth-order stream; lat. 45°26�26�, long. 112°33�20�; elevation,
4,850 ft); and Rock Creek (RC), sampled near Missoula, Mont. (third-order
stream; lat. 46°43�21�, long. 113°40�56�; elevation, 3,519 ft). The latter three sites
were included in the previous study of seasonal dynamics in microbial commu-
nities (21).

Sampling design. It has previously been indicated that particle size can affect
community structure by altering flow rates, nutrient availability and recharge,
and surface area available for colonization (11, 43). Bed materials in freestone
rivers in the Rocky Mountain West, including those in this study, are very
heterogeneous in nature and distributed patchily, ranging from silt to cobbles.
Thus, we chose to compare a single sediment size fraction (2.36 to 1.70 mm in
diameter) for all sites and rivers to reduce the potential for high variability
between streams resulting from patchy distribution of heterogeneous sediments
and to allow direct comparison of microbial communities inhabiting similar
environments but in different locations. Further, this same rationale and strategy
were employed in prior work at some of these sites (21), making it possible to
directly compare and extend on results from different studies.

Three replicate 125-g samples of hand-sieved bulk sediment (diameter, 2.36 to
1.70; depth, 0 to 20 cm) from each of the six sites were packed into sterile, slotted

FIG. 1. Map of field sampling sites. Each stream sampled is indicated by a square (■). SB, Silver Bow Creek; GC, Clark Fork at Gold Creek;
CF, Clark Fork at Rock Creek; LB, Little Blackfoot River; RC, Rock Creek; BH, Big Hole River.

TABLE 1. Physical parameters of streams

Site Catchment area
(square miles)

Steambed
gradient Substratum type Avg

pH

Mean concn (SE) ofa:

As Cd Cu Pb Zn

LB 407 0.004 Small cobbles/gravel 8.3 6.01 (0.80) 0.29 (0.03) 4.41 (0.40) 8.26 (0.38) 21.9 (1.04)
RC 885 0.007 Large cobbles/gravel 8.1 2.01 (0.40) 0.11 (0.01) 1.43 (0.13) 2.59 (0.20) BDL (N/A)
BH 2,665 0.003 Large cobbles/gravel 8.0 2.85 (0.11) 0.11 (0.01) 1.14 (0.10) 3.71 (0.13) 6.77 (0.02)
CF 3,641 0.006 Large cobbles/gravel 7.9 3.68 (0.23) 0.45 (0.01) 30.1 (1.12) 7.87 (0.19) 108 (7.71)
GC 1,760 0.004 Large cobbles/gravel 8.3 5.88 (0.38) 0.53 (0.04) 65.9 (5.33) 13.9 (1.74) 147 (7.17)
SB 363 0.004 Small cobbles/gravel 8.2 68.9 (19.9) 1.84 (0.12) 332 (45.6) 69.8 (8.91) 433 (74.7)

a Values are mean concentrations (micrograms of metal/gram [dry wt] of sediment) and standard errors of each metal associated with hyporheic sediments gathered
from each stream. Detection limit for Zn, 0.04 �g/g. BDL, below detection limit; N/A, not applicable.
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polyvinyl chloride columns and buried in the streambeds at the heads of three
separate riffles at each respective site, as described previously (21). Thus, the
sediment columns harbored the native community from their respective streams
at the time of emplacement and did not require extensive recolonization. Pore
water samplers (described previously in reference 52) were placed in groups of
two, 30 cm apart, at 5- to 10-cm depths �20 cm upstream of the buried columns.
After burial, the columns were allowed to equilibrate in place for 6 weeks before
they were removed and processed. Handling of sediments at the time of sampling
was performed as described previously (21). In addition, fresh sediment samples
of the same size fraction were also recovered from each streambed at the time of
sampling to determine if the column sediment communities were similar to those
associated with previously undisturbed sediments.

Geochemical analyses. For sediment samples, 5 g of dried sediment was
extracted with 12.5 ml of concentrated trace-metal-grade HNO3 and 12.5 ml of
concentrated trace-metal-grade HCl. Samples were heated to 95°C (�5°C) and
refluxed for 1 h and then cooled for 10 min, diluted to 50 ml with milli-Q water,
inverted, and shaken and then allowed to cool and settle overnight. Extracted
samples were filtered using a FilterMate filtering device (Environmental Express,
Mt. Pleasant, S.C.), and the eluant was analyzed for total dissolved metals on an
inductively coupled argon plasma emission spectrometer (ICAPES) (IRIS
model, Thermoelemental, Franklin, Mass.) according to U.S. Environmental
Protection Agency test method 200.7. Total recoverable metals were measured
for each sediment sample, and the concentrations of five metals (As, Cd, Cu, Pb,
and Zn) were used to create the CI. This index was used as a measure of
contamination relative to the metal content of the sediment at the most pristine
site included in the study (RC). The CI was calculated by the formula CI �
�((log Men/log Men at RC)/number of metals included in index), where n
represents As, Cd, Cu, Pb, and Zn.

For water samples, three 10-ml pore water samples were collected from each
pore water sampler prior to removal of the columns. One water sample from
each sampler was analyzed for total dissolved metals, one was analyzed for
dissolved As, and one was analyzed for dissolved NO2

	, NO3
	, PO4

2	, F 	, Cl	,
and SO4

2	. Water samples were filtered on-site with 0.2-�m-pore-size syringe
filters (Supor [Gelman], Ann Arbor, Mich.) directly into autosampler vials.
Samples to be analyzed for total dissolved metals were acidified in the field by
addition of 150 �l of HNO3 and 60 �l of HCl. Samples analyzed for dissolved As
received 30 �l of H2O2 in addition to the acid addition above. Filtered and
acidified samples were capped, shaken, and stored on ice or at 4°C until analyzed
via ultrasonic nebulization on ICAPES. Dissolved anions were determined from
nonacidified samples on a Dionex D500 ion chromatograph (Dionex, Sunnyvale,
Calif.) as per U.S. Environmental Protection Agency method 300.0 using an
AS14 anion separation column (Dionex).

DNA extraction. Lyophilized sediment samples (1 g) were extracted based on
the direct lysis method of Yu and Mohn (78) with modifications as described
previously (21).

DGGE and gel pattern analysis. PCR amplification for DGGE analysis, details
of the DGGE protocol, gel staining, band visualization, and pattern analysis have
been described elsewhere (21). Briefly, PCR amplicons were generated using the
generally conserved 16S rRNA gene primer pair 536fC (5�-CGC CCG CCG
CGC CCC GCG CCC GGC CCG CCG CCC CCG CCC CCA GCM GCC GCG
GTA ATW C-3�) and 907r (5�-CCG TCA ATT CMT TTR AGT TT-3�). For
DGGE analysis, 400 ng of PCR product generated from each sample was sep-
arated on a 6% acrylamide gel with a linear denaturant gradient range of 25 to
60% using the Bio-Rad D-GENE System (Bio-Rad Laboratories, Hercules,

Calif.). Gels were stained with SYBERGreen I (BioWhittaker Molecular Appli-
cations, Rockland, Maine), and bands were visualized using a Bio-Rad Gel Doc
1000 and Molecular Analyst software (Bio-Rad Laboratories). GelCompar v.4.0
software (Applied Maths, Kortrijk, Belgium) was used to analyze DGGE images
for pattern similarities by using the Dice coefficient.

Cloning and DNA sequencing. Forty-seven individual bands (seven to nine
from each site) were recovered from DGGE gels for further sequence analysis
and primer development by using modifications of the protocol described by
Sanguinetti et al. (65). Briefly, bands were excised from DGGE gels, transferred
to 500-�l microcentrifuge tubes, and then macerated and mixed with 100 �l of
elution buffer (50 mM KCl, 10 mM Tris, 0.1% Triton X-100 [pH 8.0]). The
mixtures were incubated overnight at room temperature to elute the DNA from
the acrylamide matrix. The eluted PCR products were again amplified by PCR as
described above and then purified using Qiaquick PCR Clean-up columns (Qia-
gen, Valencia, Calif.). The purified products were cloned into the plasmid vector
pT7Blue-3 with the Perfectly Blunt cloning kit (Novagen, Inc., Madison, Wis.).
Plasmid clones were identified based on blue-white screening and grown over-
night in Luria-Bertani broth amended with ampicillin (300 �g/ml) and tetracy-
cline (15 �g/ml), and plasmid DNA was purified by using Qiagen mini-prep kits
as specified. To confirm the identity of each clone, purified plasmid DNA was
used as template for PCR using the same 536fC-907r primer pair, and the
resulting product was analyzed by DGGE alongside the original total-community
PCR products. Bidirectional DNA sequence analysis of confirmed clones was
performed by MWGbiotech (High Point, N.C.).

Phylogenetic analysis. Phylogenetic analysis was performed as described in
detail elsewhere (21). Briefly, sequences recovered from excised bands were
analyzed for chimeric character by using the Ribosomal Database Project II
(RDP II) Chimera Check program (http://rdp.cme.msu.edu/html/). Sequences
that appeared chimeric were excluded from further analysis. The closest known
relatives of hyporheic microorganisms represented by recovered sequences were
identified with the Sequence Match program of RDP II. Sequences were aligned
with the Sequence Align program on RDP II, and the resulting alignments were
optimized by using SeqPup v.0.8 shareware (http://iubio.bio.indiana.edu/soft
/molbio/seqpup/java/seqpup-doc.html). Paup v.4.0b.8.a (Sinauer Associates, Inc.,
Sunderland, Mass.) was utilized to construct phylogenetic trees from the aligned
sequences. The maximum parsimony, maximum likelihood, and neighbor-joining
algorithms were each used to generate optimal tree topologies, each of which was
confirmed by 100-fold bootstrapping. A consensus tree was generated from these
three optimal trees. The four major branches of the consensus tree were used to
generate group-specific primers for real-time qPCR analysis as described below.

Real-time qPCR. Group-specific primers corresponding to the four groups
defined by phylogenetic analysis were constructed to monitor group-level abun-
dance across the metal contamination gradient. All primer pairs (Table 2) were
generated as described previously (21) except that DNA sequences from all six
river sites in the present study were included in the primer development process.
Nonetheless, the aligned sequences produced the same consensus sequences and
primer sets as in the prior three-site study, although primer pairs Ap, A/R, Ps,
and Nfix from reference 21 have been renamed as representing groups I, II, III,
and IV, respectively, to reflect their now more general nature.

Real-time qPCRs were used to quantify the numbers of copies per gram of
sediment representing each of the defined phylogenetic groups by using a Bio-
Rad iCycler (Bio-Rad Laboratories) and a SYBERGreen I detection method.
PCR mixtures, the construction of qPCR standards, and calculations of target
molecule densities have been described in detail previously (21).

TABLE 2. 16S rDNA primer pairs generated for qPCR analysis

Targeted group and
product size
(nucleotides)

Group most closely
affiliated with Probe name/sequence Temp

(°C)
No. of matches

in RDP

I (83) 
-Proteobacteria GIF/forward primer (5�-3�) AACACCAGTGGCGAAGG 59.61 11
GIR/reverse primer 2 (3�-5�) GAGCAAACAGGATTAGATACCC 60.81 17

II (171) �-Proteobacteria GIIF/forward primer 2 (5�-3�) CGGYAGAGGGGGATGGAA 62.18 0
GIIR/reverse primer 2 (3�-5�) CCCTAAACGATGTCAACTGG 60.4 0

III (143) �-Proteobacteira GIIIF/forward primer 2 (5�-3�) GAAATGCGTAGAGATCGGGAG 62.57 0
GIIIR/reverse primer 2 (5�-3�) ACRTCCAGTTCGCATCGTTTAGG 62.77 133

IV (86) Cyanobacteria GIVF/forward primer F1(5�-3�) CCWGTAGTCCTAGCCGTAA 60.16 0
GIVR/reverse primer 2 (3�-5�) CTAACGCGTTAAGTATCCCG 60.4 208
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Different PCR conditions for each primer pair were as follows: group I, 5 min
at 95°C followed by 45 cycles of 15 s at 95°C, 30 s at 58.4°C, and 60 s at 72°C;
group II, 5 min at 95°C followed by 45 cycles of 15 s at 95°C, 30 s at 59.4°C, and
60 s at 72°C; group III, 5 min at 95°C followed by 40 cycles of 15 s at 95°C, 30 s
at 61.5°C, and 60 s at 72°C; group IV, 5 min at 95°C followed by 40 cycles of 15 s
at 95°C, 30 s at 57.3°C, and 60 s at 72°C. SYBER Green fluorescence was
measured following the 72°C extension period of each cycle to monitor product
accumulation in real time.

PLFA analysis. PLFAs were extracted and analyzed according to the method
of White and Ringelberg (75). Briefly, lipids were removed from samples into
chloroform by a modified Bligh and Dyer extraction procedure. Phospholipids
were separated from other lipids by silicic acid chromatography and derivatized
to fatty acid methyl esters (FAMEs) for analysis by gas chromatography. Two
capillary columns of differing polarity (HP-5 [cross-linked 5% phenyl methyl
silicon] 50-m by 0.32-mm by 0.52-�m film and HP-225 [50% CNPrPh Me Silox-
ane] 30-m by 0.32-mm by 0.25-�m film) were used to identify 32 FAMEs by
comparison of retention times of suspected FAMEs to retention times of pur-
chased standards. FAME identifications were confirmed by gas chromatography-
mass spectrometry.

Microscopic enumeration of bacteria. Bacterial cell densities associated with
1-g samples of lyophilized hyporheic sediment were determined as described
elsewhere (27). Thirty fields of view or 400 cells (whichever was achieved first)
were counted from each slide.

Statistical analyses. All statistical tests for DNA-based measures were run
with NCSS 2001 (NCSS, Kaysville, Utah). Statistical analyses used to analyze
PLFA data were performed with SPSS software (version 10.0, SPSS Inc.). A P
value of 0.05 was set as the significance threshold for all Tukey-Kramer multiple-
comparison tests.

RESULTS

CI. CI values were calculated for the sediment samples gath-
ered from each location (Fig. 2). Concentrations of metals
included in the CI differed among sites (FAs � 10.62, P 
0.001; FCd � 147.1, P  0.001; FCu � 50.15, P  0.001; FPb �
48.50, P  0.001; FZn � 28.59, P  0.001) (Table 1). SB, the
location closest to the copper mine in Butte, Mont., had the
highest CI value. The GC and CF sites are located downstream
in the same drainage as SB and correspondingly had lower CI
values. The sites LB and BH are located in drainages that
supported mining activities on a smaller scale and thus exhibit
lower levels of contamination. The lowest CI values were ob-
tained in RC, a blue-ribbon trout stream that is considered the
most pristine of the sites sampled in this study. Together, these
six sites represent CI values that decrease linearly across a wide
range of sediment metal content values.

Direct microscopic enumeration. Direct microscopy was
used to determine bacterial densities associated with the hy-

porheic sediments. The measured cell densities ranged be-
tween 1.73 � 107 and 1.27 � 108 cells g (dry weight) of sedi-
ment	1 (data not shown). An analysis of variance indicated
that there were significant differences between sites (Fsite �
11.82, P  0.001). The Tukey-Kramer multiple-comparison
test was used to determine significant differences (P  0.05)
between specific sites. The values for log cell number g	1 at
GC were significantly higher than those found at LB, BH, and
RC. Conversely, the values for log cell number g	1 at BH were
significantly lower than those obtained for SB, GC, and CF.
Linear regression analysis of log cell number g of sediment	1

versus CI did not reveal a direct relationship between sediment
metal content and bacterial biomass (R2 � 0.233, P � 0.33).

Phylogenetic analysis. A phylogenetic analysis of the se-
quences recovered from the DGGE gel (Fig. 3) was performed
to determine if there were differences in the distribution of
phylogenetic groups along the contamination gradient. The
closest matches of the obtained sequences to known species
were determined by comparison to the RDP II database (Table
3). The majority of the sequences were most closely related to
known aquatic organisms or environmental clones previously
recovered from aquatic systems. A phylogenetic tree was gen-
erated from the consensus of maximum parsimony, maximum
likelihood, and neighbor-joining algorithms as described in
Materials and Methods (Fig. 4). There was no clear pattern of
species- or group-level distribution along the metal gradient.
Rather, sequences recovered from most streams were distrib-
uted throughout the tree. Based on this analysis, four phylo-
genetic groups (I, II, III, and IV) most closely related to 
-, �-,
and �-proteobacteria and the cyanobacteria, respectively, were
defined for further analysis. The sequences represented in each
group from this study formed the basis for the development of
the group-specific primers used in the real-time qPCR analy-
ses.

This partial phylogenetic survey was undertaken to develop
a suite of group-level primers for subsequent analyses of metal
effects and should not be taken as a comprehensive assessment
of all bacterial populations present. However, the array of
phylogenetic groups obtained is in agreement with previous
studies in lotic environments (6, 39). Thus, the recovered se-
quences and identifications appear to be a reasonable repre-
sentation of the types and diversity of bacteria associated with
the hyporheic zone sediments and suitable for the develop-
ment of group-level primers to monitor effects of metals in this
system.

Real-time qPCR. Real-time qPCR was used to quantify the
16S rRNA gene copy number/gram of the four phylogenetic
groups defined in this study. The values for copy number/gram
of each phylogenetic group were plotted against the CI to
determine which groups were affected by the sediment metal
content (Fig. 5). The response to the sediment metal content
varied among the four groups. Group I abundance was not
correlated with CI (R2 � 0.22, P � 0.34), although a general
positive trend was observed. The abundance of group II was
negatively correlated with the CI (R2 � 0.68, P � 0.043).
Group III showed a strong positive correlation with sediment
metal content (R2 � 0.70, P � 0.037). Finally, group IV abun-
dance showed no relationship with the sediment metal content
(R2  0.001, P � 0.954) and no apparent population trends.

FIG. 2. Bar graph of CI values (mean and standard errors; n � 3)
for sediments sieved from each site. Site abbreviations are as described
in the legend for Fig. 1.
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DGGE pattern analysis. Comparison of fingerprints ob-
tained by DGGE analysis was used as a means of describing
the structure of microbial communities at each site. Visual
examination of the DGGE patterns (Fig. 3) suggests that each
site supports unique molecular species, but a number of bands
appear to be common to all sites. In addition, visual inspection
suggests that the similarity within a site is greater than the
similarity between sites. To better quantify the community
structure differences within and between sites, and to test
whether there was a relationship between community structure
and CI, a similarity matrix was constructed based on the Dice
coefficient. Analysis of variance indicated that there was a
significant difference between the within-site and between-site
similarity scores (Fcomparison type � 109.57, P  0.001), indicat-
ing that there is more variability in community structure be-
tween sites than within sites. The mean dissimilarity scores
calculated between sites (i.e., SB versus LB, BH versus GC,
etc.) for all pairwise combinations were plotted against the
difference in CI between the two sites (Fig. 6A). There was a
significant positive linear relationship between DGGE pattern
dissimilarity and the difference in CI values between sites (R2

� 0.669, P  0.001).

PLFA analysis. Since particular PLFAs can be associated
with specific microbial populations or groups, the relative
abundance of each identified phospholipid was determined to
assess whether there were any identifiable patterns of distri-
bution. Sites with higher CI values (SB, GC, and CF) exhibited
a greater proportion of prokaryotic fatty acid markers than the
sites with lower CI values (LB, BH, and RC) (data not shown).
Conversely, the sites with lower CI values (LB, BH, and RC)
had higher relative abundances of markers for certain eu-
karyotes and actinomycetes (data not shown). Specifically, the
low-CI sites tended to have larger amounts of 18:3�6, 18:2�6,
and 10me16:0, markers for diatoms, fungi, and actinomycetes,
respectively. By contrast, SB, GC, and CF tended to have
greater amounts of monoenoic, branched, and short-chain
fatty acids. However, these are merely qualitative trends and
are not consistent along the metal gradient. For example, GC
contains a relatively high proportion of the fungal marker
18:2�6 and other eukaryotic markers (18:3�5 and 20:5). Thus,
the examination of individual fatty acid markers did not reveal
a clear relationship between microbial phospholipids and CI.

To further explore possible relationships, we used principal-
component analysis and linear modeling. Since some of the

FIG. 3. DGGE profiles of microbial communities inhabiting each river site. PCR products were synthesized with the universal primer pair
536fC-907r. Labels above each lane indicate which site the pattern represents. Three samples were analyzed from each site. Clostridium perfringens
(C.p.) and Micrococcus luteus (M.l.) were used as reference patterns during the normalization procedure in GelCompar. Numbers and arrows
indicate which bands were cut and sequenced for the phylogenetic analysis.
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eukaryotic markers were not present at all of the sites, we
considered only the bacterial phospholipids for the principal-
component analysis. The first two principal components of the
PLFA analysis were unable to clearly separate the six sites
(data not shown). However, a significant negative linear rela-
tionship was observed when we plotted the first principal com-
ponent of the PLFA versus CI (R2 � 0.371, P � 0.009) (Fig. 6B).

Anion analysis. Linear regression analysis of each dissolved
anion versus the community response variables (DGGE com-
munity similarity, PLFA PC 1, and real-time qPCR data) re-
vealed no significant relationships (data not shown).

Validation of sediment columns. Fresh sediment samples
gathered at the time of column recovery were analyzed to
determine if in situ incubation of sediments in the polyvinyl
chloride columns affected the structure of the hyporheic mi-
crobial communities. No difference was detected in bacterial

cell densities (Fcell density � 1.76, P � 0.19) between freshly
sieved sediments and those incubated in the columns. Com-
parison of DGGE patterns from fresh and column sediments
indicated that incubation in the columns did not affect micro-
bial community structure compared to bulk sediment (data not
shown). Similarly, there was no significant difference in the
patterns of phospholipids recovered from fresh and column
sediments.

DISCUSSION

Rivers vary longitudinally (i.e., from headwaters to down-
stream reaches) in a number of geomorphological factors, in-
cluding average discharge, substratum type, and drainage area.
The river continuum concept (76) states that longitudinal vari-
ation in these geomorphological features should control the
distribution of biota associated with the river ecosystem. We

TABLE 3. Closest match of cloned DGGE bands to known species

Site and clone
name Best match to known species in RDP Sab score

SB-1 Xanthomonas hyacinthi LMG 739 (T) 0.692
SB-2 Rhodoferax unidentified proteobacterium arc53 0.949
SB-3 Matsuebacter chitosanotabidus 0.866
SB-6 Leptothrix discophora strain SS-1 ATCC 43182 0.877
SB-8 Rhodobacter sphaeroides IFO 12203 0.914
SB-13 Dictyoglomus thermophilum strain H-6-12 DSM 3960 (T) 0.501
SB-14 Rhizobium sp. strain CIAM 2927 0.763
GC-1 Aquabacterium commune strain B8 0.912
GC-2 Nitrospira cf. moscoviensis strain SBR2046 0.887
GC-3 Uncultured Pirellula clone 5H12 0.704
GC-4 Hyphomicrobium denitrificans strain X DSM 1869 (T) 0.765
GC-7 Thiobacillus aquaesulis 0.798
GC-8 Lutelmonas mephitis strain B 1953/27.1 0.809
GC-9 Rhodococcus erythropolis DSM 4318 0.993
CF-1 Sphingomonas subterranea IFO 16086 0.919
CF-2 Calothrix desertica PCC 7102 0.713
CF-3 Desulfobulbus rhabdoformis 16S rRNA gene, complete 0.541
CF-5 Bacterial species DNA for 16S rRNA gene (strain IFAM 2074) 0.699
CF-6 Methylocystis parvus 0.711
CF-7 Acidobacterium subdivision Environmental RB group (clone RB30) 0.896
CF-8 Hydrogenophaga palleronii strain S1 DSM 63 (T) 0.915
LB-1 Leptothrix strain MBIC3364 0.887
LB-2 Nitrospina subdivision Environmental clone 2027 group (clone 11-25) 0.725
LB-3 Chamaesiphon subglobosus PCC 7430 0.741
LB-4 Nostoc strain GSV224 0.941
LB-5 Geobacter sp. strain JW-3 0.973
LB-8 Azospirillum doebereinerae strain 63f 0.622
LB-9 Aquabacterium commune strain B8 0.922
LB-11 Unidentified eubacterium from the Amazon 16S rRNA gene 0.815
BH-1 Unidentified eubacterium from the Amazon 16S rRNA gene 0.665
BH-2 Rhizobium strain CJ5, 24N, USDA 3398 0.845
BH-3 Planctomyces sp. strain Schlesner 642 0.741
BH-6 Rhodoferax unidentified proteobacterium arc53 0.904
BH-8 Pirellula staleyi 0.637
BH-10 Pelobacter carbinolicus 0.624
BH-11 Janibacter thuringensis 0.923
BH-12 Uncultured eubacterium H1.2.f isolated from a deep subsurface paleosol 0.534
BH-13 Acidovorax strain G8B1 0.842
RC-1 Acidovorax strain G8B1 0.842
RC-2 Comamonas sp. 16S rRNA gene, isolate 158 0.881
RC-3 Rhodoferax unidentified proteobacterium arc53 0.889
RC-4 Leptothrix strain MBIC3364 0.931
RC-5 Xanthomonas melonis LMG 8670 (T) 0.894
RC-6 Frateuria aurantia IFO 3245 (T) 0.841
RC-7 Mount Coot-tha region (Brisbane, Australia) 5- to 10-cm-depth soil DNA clone MC 26 0.719
RC-9 Aquabacterium commune strain B8 0.942
RC-10 Hyphomicrobium denitrificans strain X DSM 1869 (T) 0.846
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hypothesized that the influence of fluvial heavy-metal deposi-
tion on hyporheic microbial community structure would over-
ride the effects of geomorphological variation. If this hypoth-
esis is correct, then there should be a greater similarity among
the hyporheic-zone communities in sites with similar CI values.

This influence should be apparent regardless of stream size or
sampling location, assuming that metal impacts dominate geo-
morphological differences between streams.

To test this hypothesis, a series of natural stream sites rep-
resenting a gradient of metal contamination were examined;

FIG. 4. Phylogenetic tree of partial 16S rRNA gene sequences amplified with the 536f and 907r universal 16S primers. The symbols and
represent branches that are supported by maximum likelihood, maximum parsimony, and neighbor-joining analysis with the following bootstrap
values (x): F, 50%  x  74%; ■, x � 74%.
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this can be a useful approach for determining the degree to
which metal contaminants influence microbial community
structure (2, 18, 29, 54). This field study sampled along a
200-km stretch of the Clark Fork River and several other
streams encompassing a range of geomorphological features.
Including this geomorphological variation in our sampling re-
gime ensures that any observed metal effects must be domi-

nating to be apparent in light of the other variables in the
system. Thus, the correlations discussed herein indicate that
the structure of hyporheic microbial communities is controlled
to some extent by sediment metal levels and that this heavy-
metal influence outweighs the effects of longitudinal geomor-
phological variation.

This study relates the structure of hyporheic microbial com-

FIG. 5. Abundance of bacterial groups across sites. Linear regressions of mean and standard errors (n � 3) of 16S rRNA gene copy
number/gram of sediment versus CI. Each plot represents a separate qPCR response variable (i.e., groups I, II, III, and IV).

FIG. 6. Linear regressions of community structure measures versus CI. (A) DGGE dissimilarity scores versus the difference in CI between all
sites. (B) First principal component of the bacterial PLFA analysis versus the CI. Lines represent the best linear fit of the data included in the graph.
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munities to an index of heavy-metal contamination (CI) within
each stream. The metals included in the CI are the five most
toxic heavy metals present in each stream and are known to
influence aquatic and terrestrial biota (1, 17, 32, 34, 35, 70).
Metals not known to have toxic effects on aquatic or terrestrial
biota were excluded from the CI calculations. All of the heavy
metals that were enriched in the contaminated sites covary,
and thus determination of the effects of any individual heavy-
metal contaminant on hyporheic-zone microbial community
structure is confounded (55). Further, owing to the high degree
of colinearity in the set of predictor variables (metal concen-
trations), separate statistical analyses involving individual
metal variables would be inappropriate. By relating microbial
community structure to CI, we avoided this colinearity issue
and developed and utilized an environmentally relevant mea-
sure of metal contamination.

It is noted that other metals, such as Fe, can affect the
bioavailability of metals in the CI. However, including Fe con-
centrations in the CI had no effect on the relationships re-
ported here (data not shown). Further, the high degree of
correlation between CI and hyporheic microbial community
composition and between CI and group-level abundance indi-
cates that the CI is an accurate indicator of bioavailable heavy
metals. To our knowledge, there are no prior investigations
relating the same types and ranges of metal contaminants used
here to changes in river sediment microbial communities.
However, previous investigations of terrestrial systems have
shown similar community-level responses to heavy-metal con-
tamination (2, 18, 28, 54, 63, 66).

We employed the strategy of analyzing a single sediment size
class in emplaced cores to control for the high degree of phys-
ical heterogeneity in freestone river sediments, to facilitate
future studies on the system (e.g., column transplant experi-
ments), and to maximize our ability to directly compare data
from current and future studies.

The absolute size of microbial communities (i.e., standing
microbial biomass) has previously been shown to be relatively
insensitive to heavy-metal contamination (2, 29, 40, 66). In the
current study, the measurements of bacterial cell densities
based on direct microscopic enumeration indicated that the
total bacterial abundance in the hyporheic zone was unaffected
by elevated sediment metal levels. However, it was apparent
that the abundance of individual phylogenetic groups inhabit-
ing the hyporheic zone differed along the contamination gradient.

If the group delineations (groups I, II, III, and IV) are
extended to encompass the broader phylogenetic groups (i.e.,

-, �-, and �-proteobacteria and cyanobacteria, respectively)
suggested by phylogenetic analysis, then these hyporheic-zone
data differ from trends seen in prior studies of metal contam-
ination in terrestrial environments. Sandaa et al. (62), studying
soils amended with metal-rich sewage sludge, found decreases
in 
-, �-, and �-proteobacteria. By contrast, the hyporheic-
zone communities exhibited a decrease in 
-proteobacteria but
no significant change in �-proteobacteria and an increase in
�-proteobacteria with increasing metal contamination. In a
different study utilizing ribosomal intergenic spacer analysis,
changes in soil microbial communities in response to Hg(II)
exposure were attributed to the appearance of previously un-
detected �-proteobacteria and low-G�C gram-positives (60,
61). The observed differences between these studies suggest

that the nature of both the contaminant(s) and the environ-
ments in which they are deposited play roles in the response of
indigenous microbial communities to heavy-metal contamina-
tion. It is also worth noting that these other studies monitored
the short-term response of communities to metal amendments,
while our study system investigates the long-term effects of
fluvially deposited heavy metals decades after their introduc-
tion to the environment.

A variety of studies have utilized DNA and phospholipid
markers to demonstrate changes in microbial community com-
position due to heavy-metal contamination (2, 28, 29, 37, 54,
61, 62, 64, 66, 74). Wenderoth and Reber (74), using amplified
rDNA restriction analysis (ARDRA), indicated that soils con-
taminated with Zn and other metals tend to support predom-
inantly gram-negative organisms. Likewise, Sandaa et al. (62)
found increased populations of gram-negative 
-proteobacte-
ria along with decreases in gram-positive and other gram-
negative lineages in soils amended with metal-rich sewage
sludge. Phylogenetic analysis of partial 16S rRNA gene se-
quences recovered from each of the streams sampled in the
current study indicated that the hyporheic microbial commu-
nities were predominated by gram-negative bacteria (Table 3
and Fig. 4). Several of the sequences obtained were not highly
related to known organisms and therefore gave little indication
of species-level identifications (Table 3). This was an expected
finding, since microbial communities inhabiting the hyporheic
zone are relatively unexplored. However, these sequences con-
sistently grouped with known gram-negative microbes (Fig. 4)
previously shown to reside in aquatic systems (30).

DGGE and DNA sequence analysis has previously been
used to demonstrate changes in soil archaeal communities
exposed to increasing levels of heavy metal-contaminated sew-
age sludge (62). Similarly, the DGGE data in the current study
indicated a direct linear relationship between the degree of
metal contamination and the similarity of microbial communi-
ties between streams.

Prior studies have employed PLFA analysis to demonstrate
that Cd, Cu, Ni, Pb, or Zn selects for prokaryotic phospholipid
markers over those representative of fungi (29). However,
other investigators have found opposite trends in soils contam-
inated with Cr, Pb, and hydrocarbons (66). The PLFA data
presented here indicate an increased proportion of prokaryotic
markers at sites with high CI values and increased abundance
of fungal and other eukaryotic markers at sites with low CI
values. Thus, the preponderance of evidence in this and prior
studies indicates that microbial communities in a variety of
environments are affected by the presence of heavy metals, but
no general conclusions can be made regarding specifically how
communities in different environments will respond to various
metals.

Based on the data in the current study, it appears that these
hyporheic communities do not respond to the presence of
metals at the level of total community biomass but rather at the
level at which specific bacterial populations or groups comprise
the community, and the relative abundances of those popula-
tions or groups. It is acknowledged that predation (33, 38) and
dissolved-organic-carbon quality and quantity (11, 25, 56, 79)
can have effects on the size and structure of microbial com-
munities. Determining the effects of the former was beyond the
scope of this investigation, and dissolved-organic-carbon levels
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were generally below the limit of detection (5 �g/ml) within
the streams sampled (data not shown). However, potential
effects of available nutrients on the microbial community struc-
ture within each stream were assessed by measuring a suite of
dissolved anions in the pore water. The lack of correlation
between measurable nutrients and community structure lends
support to the conclusion that sediment metal loads play a
substantial role in controlling bacterial community structure in
the hyporheic zone of the streams studied.

Other studies have suggested that physiological stress caused
by the toxic effects of metals leads to selection of less diverse
communities comprised of metal-resistant populations (2, 18,
54, 64, 74) and a general suppression of metabolic activity (2,
10, 19, 41, 53). Close examination of the community-level mea-
sures described herein and the results of a separate activity-
based study (27) do not support those hypotheses. There was
no apparent correlation between sediment metal content (CI)
and either diversity, as indicated by DGGE pattern complexity
in the current study, or total productivity, as indicated by
[14C]leucine incorporation (27). These data indicate that metal
stress in fluvial environments doesn’t reduce biomass, diversity,
or productivity, as has previously been suggested for soils (2,
10, 19, 41, 53, 64, 74). Rather, the structure of microbial com-
munities changes (i.e., population and group-level composition
and relative abundance). Another prior study suggested that
compensatory changes in response to metal toxicity may alter
genotypic and/or phenotypic characteristics of a community at
metal concentrations below thresholds that impact metabolic
activity (2). The results presented here lend support to that
hypothesis.

The sediments that underlie a river represent a microbial
habitat important to the cycling of nutrients in streams (9, 50).
To date, the communities residing in these habitats have gen-
erally been characterized at the process level by using activity-
based measurements such as total microbial biomass, respira-
tion rates, and bacterial production rates (3, 16, 23–26, 51, 56,
57). Fewer studies have attempted to define or describe the
taxa that comprise these communities, especially by using mo-
lecular techniques (5, 67). Molecular characterization of these
communities may have important implications for river resto-
ration decisions, because without an accurate understanding of
the ecology of natural hyporheic populations, it may not be
possible to know whether normal community functions have
been impacted or subsequently restored in a river ecosystem,
since measures with coarse resolution show little or no re-
sponse. Here, we have utilized moderate- to high-resolution
molecular techniques to demonstrate a correlation between
bacterial community structure within the hyporheic zone and
the sedimentary metal loads therein. The information pre-
sented here may guide future experiments and improve our
ability to predict long-term effects of metal contamination on
river ecosystems and indicate how impacts on microbial com-
munities may be translated to, and thus explain, observed per-
turbations at higher trophic levels in riverine ecosystems.
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munity structure during long-term incubation in two soils experimentally
contaminated with metals. Soil Biol. Biochem. 28:55–63.

29. Frostegard, A., A. Tunlid, and E. Bååth. 1993. Phospholipid fatty acid com-
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