Characterization of a New \textit{erm}-Related Macrolide Resistance Gene Present in Probiotic Strains of \textit{Bacillus clausii}

Bülent Bozdogan,† Sébastien Galopin, and Roland Leclercq*

Service de Microbiologie, CHU Cote de Nacre, Caen, France

Received 4 September 2003/Accepted 10 October 2003

The mechanism of resistance to macrolides, lincosamides, and streptogramins B was studied in four \textit{Bacillus clausii} strains that are mixed in a probiotic administered to humans for prevention of gastrointestinal side effects due to oral antibiotic chemotherapy and in three reference strains of \textit{B. clausii}, DSM8716, ATCC 21536, and ATCC 21537. An 846-bp gene called \textit{erm}(34), which is related to the \textit{erm} genes conferring resistance to these antibiotics by ribosomal methylation, was cloned from total DNA of \textit{B. clausii} DSM8716 into \textit{Escherichia coli}. The deduced amino acid sequence presented 61% identity with that of \textit{Erm(D)} from \textit{B. licheniformis}, \textit{B. halodurans}, and \textit{B. anthracis}. Pulsed-field gel electrophoresis of total DNA digested by I-CeuI, followed by hybridization with an \textit{erm}(34)-specific probe, indicated a chromosomal location of the gene in all \textit{B. clausii} strains. Repeated attempts to transfer resistance to macrolides by conjugation from \textit{B. clausii} strains to \textit{Enterococcus faecalis} JH2-2, \textit{E. faecium} HM1070, and \textit{B. subtilis} UCN19 were unsuccessful.

Spores of \textit{Bacillus} sp. are administered to humans for prevention of gastrointestinal side effects due to oral antibiotic therapy. The potential effects of spores are to restore an intestinal flora following destruction of commensals by antibiotics, immunostimulation, and increased secretion of immunoglobulins A (22, 23). It has been shown in a murine model that \textit{Bacillus} spores can germinate in significant numbers in the jejunum and ileum (5). Enterogermina is a mixture of antibiotic-resistant \textit{Bacillus} strains NR, OC, SIN, and T (7, 23). These strains have been recently identified as belonging to the species \textit{Bacillus clausii} (30). Since administration of the probiotic is often combined with oral antibiotic treatment, the strains of \textit{Bacillus} Enterogermina were antibiotic resistant (7, 22). Little is known about the origin of the Enterogermina strains, and each has a specific pattern of antibiotic resistance (7, 22). They are supposed to be mutants from a parental \textit{Bacillus} following multiple-step selection. The low genetic diversity among these strains is consistent with the notion that they derive from closely related strains or from an unknown common ancestor (30). Erythromycin resistance is one of the reported characteristics of \textit{B. clausii} strains (7). Oral administration of high numbers of multiply drug-resistant microorganisms might be a cause for concern if clinically important resistance determinants happened to be located on transferable genetic elements. A potential hazard is transfer of resistance to microorganisms pathogenic for humans. The risk that this event will occur and the consequences in terms of morbidity and mortality have not been evaluated. Parameters required for risk assessment include studies on the nature and mobility of the resistance genes of probiotics.

The aim of this work was to identify the mechanism of macrolide resistance in the \textit{B. clausii} probiotic strains and to characterize the genetic support for the resistance determinant.

MATERIALS AND METHODS

\textbf{Bacterial strains.} The four \textit{B. clausii} strains used for production of Enterogermina, OC, NR, SIN, and T, were obtained from Sanofi-Synthelabo OTC SpA (Milan, Italy) as separate spore suspensions. \textit{B. clausii} DSM8716, ATCC 21536, and ATCC 21537 were used as reference strains.

\textbf{Antibiotic susceptibility.} The disk diffusion method was used to determine bacterial susceptibility to antibiotics as recommended by the Comité de l’Antibiogramme de la Société Française de Microbiologie (8). Disks impregnated with 40 μg of pristinamycin I were prepared in the laboratory. Interpretive criteria for susceptibility or resistance were those recommended by the Comité de l’Antibiogramme de la Société Française de Microbiologie (8). MICs were determined by agar dilution in accordance with the NCCLS (26, 27).

\textbf{Plasmid analysis.} Plasmid DNA was extracted from Bacillus strains described by Ehrenfeld and Chewell (11). Briefly, bacterial cells were lysed with lysozyme and sodium dodecyl sulfate-NaOH. After treatment with potassium acetate, plasmid DNA was extracted with phenol-chloroform. \textit{Enterococcus faecalis} JH2-2 containing plasmid pAD1 (59.6 kb) was used as a control (11). Plasmid size was estimated by comparison with a standard after digestion with EcoR I and electrophoretic migration.

\textbf{Mating experiments.} \textit{E. faecalis} JH2-2 (16), \textit{E. faecium} HM1070 (resistant to rifampin and fusidic acid) (4), and \textit{B. subtilis} UCN19 (resistant to ciprofloxacin) (3) were used as recipients in mating experiments. In every transfer experiment, \textit{E. faecalis} BM4110 or \textit{B. subtilis} BM450 containing the conjugal plasmid pAM1 (10, 21) was used as a control. Agar plates for selection of transconjugants contained rifampin (50 μg/ml) plus fusidic acid (20 μg/ml) or ciprofloxacin (8 μg/ml) combined with erythromycin (20 μg/ml). All mating experiments were repeated a minimum of three times.

\textbf{PCR.} Deoxyligonucleotide primers specific for the \textit{erm}(A), \textit{erm}(B), \textit{erm}(C), and \textit{erm}(TR) genes were those designed previously (1, 31). PCR experiments were carried out with a Perkin-Elmer 4600 thermal cycler with a denaturation step (94°C, 5 min), followed by 35 cycles of amplification (30 s of denaturation at 94°C, 45 s of annealing at 47°C, and 3 s of elongation at 72°C) and a final elongation step (72°C for 30 min). Primers 5'-GAGCTTAAAAAATGA AAAA and 5'-TTTCTTAAACATTCTCTC were used to amplify the entire \textit{erm}(34) gene.

\textbf{Cloning experiments and gene analysis.} Extraction of total DNA from \textit{B. clausii} and cloning were performed by standard techniques (29). DNA from \textit{B. clausii} was digested with various restriction enzymes, including \textit{Hind} III and \textit{Eco} RI. The fragments were cloned into plasmid pUC18 and introduced by electrottransformation into \textit{E. coli} DH10B, and transformants were selected on agar containing ampicillin (200 μg/ml) and erythromycin (50 μg/ml). Subcloning

* Corresponding author. Mailing address: CHU de Caen Service de Microbiologie, CHU Cote de Nacre, Ave. Cote de Nacre, 14033 Caen Cedex, France. Phone: 33-231064572. Fax: 33-231064573. E-mail: leclercq-r@chu-caen.fr.

† Present address: Department of Pathology, Hershey Medical Center, Hershey, PA 17033.
in *E. faecalis* JH2-2 was done by using the shuttle plasmid pAT28 as a vector (32). Nucleotide and amino acid sequences were analyzed by using the BLAST and FASTA softwares available over the Internet at the National Center for Biotechnology Information website (http://www.ncbi.nlm.nih.gov/). Multiple-sequence alignment and phylogenetic tree preparation were performed with the ClustalX and PHYLIP programs available at the Centre de Ressources Informatique website (http://www.infobiogen.fr/). Secondary structures of the attenuator mRNA were analyzed by using the Mu-fold software (34).

Southern hybridization. DNA from *B. clausii* was digested with Smal or *Eco*RI, separated by pulsed-field gel electrophoresis by a technique similar to that used for enterococci (2), transferred onto a nylon membrane, and hybridized to a probe specific for *erm* (34) of *B. clausii*. The probe consisted in the entire gene amplified by PCR and labeled with digoxigenin (Boehringer Mannheim gene amplification). Similar hybridization experiments were performed with plasmid DNAs from *B. clausii* OC and T digested with *Eco*RI.

Nucleotide sequence accession number. The nucleotide sequence of the *erm* (34) gene from *B. clausii* DSM8716 has been deposited in the GenBank nucleotide sequence database under accession number AY243434.

RESULTS

Macrolide resistance in *B. clausii*. All of the *B. clausii* strains studied, including the three reference strains, displayed similar phenotypes of resistance to macrolides. By the disk diffusion technique, no inhibition zone was visible around disks of erythromycin, clarithromycin (14-membered ring macrolide), azithromycin (15-membered ring macrolide), spiramycin (16-membered ring macrolide), lincomycin, clindamycin (lincosamides), and pristinamycin I (streptogramin B). MICs of erythromycin, spiramycin, lincomycin, clindamycin, and pristinamycin I were greater than 128 μg/ml. All strains were susceptible to pristinamycin (a combination of oral streptogramins A and B). This pattern of resistance defines an MLS₈ phenotype generally due to the presence of an *erm* gene encoding a ribosomal methylase (19).

Identification of the *erm*(34) gene from *B. clausii* DSM8716. No DNA could be amplified with primers specific for the *erm*(A), *erm*(B), *erm*(C), and *erm*(TR) genes responsible for acquired MLS₈ resistance in gram-positive organisms pathogenic for humans and animals and total DNA of *B. clausii* strains as a template. Total DNAs from *B. clausii* DSM8716 and the probiotic strains were used to clone the determinant responsible for macrolide resistance. Three DNA fragments that conferred erythromycin resistance on *E. coli* DH10B were cloned, a 10-kb *Hin*III fragment from *B. clausii* DSM8716, a 4-kb *Hind*III fragment from *B. clausii* T, and a 6-kb *Eco*RI fragment from *B. clausii* SIN. A 1.4-kb *Eco*RI-*Hind*III fragment from strain DSM8716 was then subcloned and sequenced on both strands. Analysis of the sequence revealed an open reading frame of 846 bp preceded by an AGGGG sequence similar to the ribosome-binding site consensus sequence. This open reading frame could possibly code for a 281-amino-acid protein (Fig. 1). Comparison of the deduced sequence with proteins showed homology with various *Erm* proteins. The proteins are ribosomal methylases that monomethylate or dimethylate adenine at position 2058 (*E. coli* numbering) in 23S rRNA, which binds macrolides. The methylation confers cross-resistance to macrolides, lincosamides, and streptogramins B, the so-called MLS₈ resistance phenotype, because these molecules all have A2058 in their ribosomal binding site. The closest homology for the *erm* sequence of *B. clausii* was with *Erm*(D) from *B. licheniformis*, *B. halodurans*, and *B. anthracis* (61% identity and 71% homology) and with *Erm*(W) from *Micromonospora griseorubida* (13, 14, 15, 17, 18) (Fig. 2). Although to a lesser extent, homology was also found with the other *Erm* proteins. *erm* genes with deduced amino acid sequences with less than 79% identity are given different letter or number designations (28). The *erm*-related gene of *B. clausii* DSM 8716 was thus designated *erm*(34). The 1.4-kb *Eco*RI-*Hind*III fragment containing the *erm*(34) gene was subcloned into shuttle plasmid pAT28 and introduced into *E. faecalis* JH2-2, where it conferred an MLS₈ phenotype characterized by cross-resistance between erythromycin and lincomycin (MIC, >128 μg/ml), showing that this gene could also be expressed in a heterologous gram-positive background.

The structural gene for the putative methylase was preceded by a 68-nucleotide leader sequence, together with a ribosome-binding site, which could encode a 13-amino-acid peptide (MHFIRFLVLN). In addition, series of inverted repeats that extended from the sequence of the leader peptide to the initiation sequences for the methylase (ribosome-binding site and initiation codon) were identified that could form stem-

FIG. 1. *erm*(34) DNA sequence and deduced amino acid sequence. The nucleotide sequence of *erm*(34) is shown together with the deduced amino acid sequence of Erm34 methylase and its leader peptide. Putative ribosome-binding sites are underlined.
loops by base pairing. Computer analysis of the secondary structure of the mRNA proposed several alternative structural conformations. A final set of inverted repeats would sequester both the methylase ribosome-binding site and the codons for the first four amino acids of the methylase (data not shown). This structure resembles that involved in the expression of inducible erm genes, including erm(C), erm(A), and erm(D), which have been reported to function as translational or transcriptional attenuators (33).

Distribution and localization of the erm(34) gene. An 856-bp fragment could be amplified by PCR from the DNAs of all *B. clausii* strains. The sequences of all of the amplified DNA fragments were nearly identical. The total DNAs of the reference *B. clausii* strains and the four probiotic strains were digested with I-CeuI or SmalI, submitted to pulsed-field gel electrophoresis, transferred to a nylon membrane, and hybridized successively with *erm(34)* and 16S rRNA probes. The I-CeuI enzyme cuts in a 26-bp DNA sequence that is specific for rRNA operons (20). After digestion with this enzyme, the DNA from the *B. clausii* strains yielded seven fragments that hybridized with the rRNA probe, indicating that this species contained a minimum of seven rRNA operons (data not shown). The *erm(34)* probe hybridized to a single low-molecular-weight fragment in all of the strains studied. The *erm(34)* probe also hybridized to an approximately 20-kb *Smal* fragment in all of the strains tested (data not shown).

The *B. clausii* probiotic strains were analyzed for their plasmid content. A large plasmid could be visualized only in *B. clausii* T and OC, confirming a previous report (22). After digestion with EcoRI and electrophoretic migration, the two plasmids yielded similar restriction patterns composed of four fragments. The size of the plasmid was estimated to be approximately 30 kb. The DNA fragments were transferred to a nylon membrane and hybridized with the *erm(34)* probe. No signal was detected. We therefore concluded that the *erm(34)* gene was chromosomally located.

In vitro transfer of resistance to macrolides. Repeated attempts to transfer resistance to macrolides by conjugation from *B. clausii* probiotic strains to *E. faecalis* JH2-2, *E. faecium* HM1070, and *B. subtilis* UCN19 were unsuccessful (frequencies inferior to the limit of detection, 10^-9 per donor colony for *B. subtilis* and 5 x 10^-10 for enterococci). By contrast, the 35-kb erythromycin resistance plasmid pAMβ1 could be transferred from *E. faecalis* BM4110/pAMβ1 or *B. subtilis* BM450/pAMβ1 to all recipient strains at frequencies approximately equal to 10^-3 per donor colony for *E. faecalis* JH2-2 and *E. faecium* HM1070 and 10^-4 per donor colony for *B. subtilis* UCN19.

DISCUSSION

The *B. clausii* probiotic strains are resistant to clinically important antibiotics, including macrolides and aminoglycosides (3, 22). We have recently shown that resistance to aminoglycosides was due to the synthesis of aminoglycoside-inactivating enzyme encoded by an aadD2 chromosomal gene (3). In this study, we have shown that resistance to macrolides was associated with the presence of an *erm(34)* gene that has not been characterized or found in other bacteria so far. A minimum of 21 *erm* gene classes have been reported, which are distinguished on the basis of sequence comparison (28). Some of the *erm* genes are found in the chromosome of microorganisms that produce antibiotics or in soil bacteria; others are found on plasmids and transposons in microorganisms pathogenic for humans and animals. The *erm(34)* gene differed from the other *erm* genes in *Bacillus* spp. As already mentioned, *erm(D)* genes, previously called *ermD*, *ermK*, and *ermJ*, were characterized in *B. licheniformis*, *B. halodurans*, and *B. anthracis*, respectively (13, 14, 17). The *ermD* and *ermK* genes are localized on the chromosome of the *Bacillus* strains, but the intrinsic or acquired nature of these determinants has not been established. By contrast, *ermJ* is probably acquired since *B. anthracis* strains are usually susceptible to macrolides. Since the sequences of *ErmD*, *ErmK*, and *ErmJ* are nearly identical, they were reclassified recently in a unique *Erm(D)* class (28). Another gene, *erm(G)*, presumed to be chromosomal, has been characterized in *B. sphaericus* (25). A closely related gene (99.7% identity) borne by a conjugative transposon was found in *Bacteroides* sp. (9). Finally, a staphylococcal gene, *erm(C)*, was detected in *B. subtilis*, where it is plasmid borne (24). Alignment of *Erm* methylases was used to construct a phylogenetic tree (12). The methylases from the antibiotic producers and those from pathogenic bacteria form two distinct groups, and *Erm(34)*, although closely related to *Erm(D)* and *Erm(W)*, was placed on a separate branch (Fig. 3).

An attenuator structure with a leader peptide and a set of inverted repeats similar to those regulating inducible expression of MLSB resistance in several *erm* genes was identified upstream of *erm(34)*. The induction mechanism has been intensively studied in the case of *erm(C)* from *Staphylococcus aureus*. It has been shown that *erm(C)* mRNA exists in a stable conformation in which the initiation sequences for the methylase are sequestered by base pairing and thus rendered inaccessible for ribosome binding (33). Binding of erythromycin to...
a ribosome during translation of the leader peptide yields ribosomal stalling. This stalling event results in opening of the structure, exposing the initiation sequences and allowing translation to occur. Translational regulation has also been proposed for the regulation of resistance to MLSB antibiotics encoded by the erm(A) and erm(B) genes. In the case of ermK from B. licheniformis, both translational attenuation and transcriptional attenuation seem to contribute to the regulation of the gene (6, 18). Close similarities between the attenuators of ermK and erm(34) suggest that the same mechanisms might modulate the expression of macrolide resistance in B. clausii.

Although we could study only a few B. clausii strains, the erm(34) gene, which is chromosomal, is probably species specific and the MLSB resistance is inherent to B. clausii. The stability of the macrolide resistance and the high level of resistance conferred by the erm(34) gene constitute an advantage, allowing the probiotic to be maintained in the gut when it is coadministered with oral macrolides.

ACKNOWLEDGMENT

This study was supported in part by a grant from Sanofi-Synthelabo OTC SpA, Milan, Italy.

REFERENCES

