Molecular and cellular mechanisms underlying the sustained metal tolerance of ectomycorrhizal fungi are largely unknown. Some of the main mechanisms involved in metal detoxification appear to involve the chelation of metal ions in the cytosol with thiol-containing compounds, such as glutathione, phytochelatins, or metallothioneins. We used an improved high-performance liquid chromatography method for the simultaneous measurement of thiol-containing compounds from cysteine and its derivatives (γ-glutamylcysteine, glutathione) to higher-molecular-mass compounds (phytochelatins). We found that glutathione and γ-glutamylcysteine contents increased when the ectomycorrhizal fungus *Paxillus involutus* was exposed to cadmium. An additional compound with a 3-kDa molecular mass, most probably related to a metallothionein, increased drastically in mycelia exposed to cadmium. The relative lack of phytochelatins and the presence of a putative metallothionein suggest that ectomycorrhizal fungi may use a different means to tolerate heavy metals, such as Cd, than do their plant hosts.

The objective of this study was to evaluate the metabolic response of *P. involutus* to cadmium exposure by using a modified gradient reversed-phase high-performance liquid chromatography (HPLC) method (25). Our working hypothesis was that exposure of *P. involutus* cultures to cadmium would result in significant quantitative and qualitative changes in thiol compounds. Our results suggest that ectomycorrhizal fungi may use a different mechanism to tolerate heavy metals, such as Cd, than do their plant hosts.

**MATERIALS AND METHODS**

Chemicals, reagents, and standards. All chemicals and solvents were of analytical or HPLC reagent grade and were used without further purification. All of the thiols in their reduced forms, 7-fluoro-2,1,3-benzoxadiazole-4-sulfonamide (ABD-F), and tri-n-butylphosphine, were purchased from Sigma (cat. no. M7641). The stock solution of each thiol standard was prepared at a concentration of 1.0 mM in 10 mM HCl containing 4 mM EDTA and kept at −80°C for up to 2 months. Five-point calibration curves were produced daily with further dilution of stock solutions in a 5% (wt/vol) SSA (sulfosalicylic acid) solution.
containing 6.3 mM DTPA (diethylenetriaminepentaacetate) to concentrations ranging from 10 to 100, 10 to 100, and 1 to 100 μM for cysteine, γ-GluCys and glutathione, respectively.

**Fungal culture and cadmium treatments.** *P. involutus* (ATCC 200175 Batsch Fries) was grown on cellophane-covered agar containing modified Melin-Norkrans (MMN) medium, as described previously (12). The MMN medium contained (in milligrams per liter): KH₂PO₄ (500), (NH₄)₂HPO₄ (250), CaCl₂-·2H₂O (50), NaCl (25), MgSO₄·7H₂O (150), thiamine HCl (0.1), and FeCl₃·6H₂O (1), plus glucose at a final concentration of 10 g/liter. The pH was adjusted to 5.5, and 10 g of granulated agar/liter was added before sterilization. After 7 days of growth on solid medium, fungal colonies were harvested without the cellophane and transferred individually to 140-mm petri dishes containing 50 ml of MMN liquid medium (pH 4.5) for 4 days as an adaptation period, with a daily change of the medium. Changes were made by transferring the colonies to a fresh petri dish containing 50 ml of MMN liquid medium. After adaptation, CaCl₂ was added to a final concentration of 0.05 to 50 ppm. When necessary, 2 mM bithionol sulfonimine was added to inhibit γ-GluCys synthase. Colonies were harvested 12 to 48 h after bithionol sulfonimine addition, frozen in liquid N₂, and stored at −80°C for no more than 1 week before analysis.

**Thiol extraction procedure.** All extraction and centrifugation steps were carried out at 4°C. Approximately 150 mg (wet weight) of mycelia was ground in a chilled mortar and pestle with 10 volumes (wt/vol) of 50 mM borate buffer (pH 9.0) was added. After vortexing, the mixture was incubated at 50°C for 10 min, and the supernatant was collected by centrifugation at 9,000 × g for 10 min, and the supernatant was stored at −80°C for up to 2 months.

**Expression of AtPCS1 and production of phytochelatin standards.** Recombinant Arabidopsis thaliana phytochelatin synthase (AtPCS1) was expressed in yeast and in Escherichia coli as previously described (24). The untransformed and AtPCS1-pFL61-transformed *S. cerevisiae* cells were grown in 50 ml of synthetic dextrose medium without uracil until the optical density at 600 nm was 0.6. Cells were collected by centrifugation at 9,000 × g for 10 min and 4°C, and thiols were extracted as described above.

**Expression of PMT1 in yeast.** A fragment of a metallothionein gene was isolated from a *P. involutus* cDNA library (C. Jacob, unpublished data). The full-length open reading frame of PMT1 was obtained by performing a 5′-RACE amplification of cDNA ends (RACE) reaction using the SMART RACE cDNA library (Clontech Laboratories Inc., Palo Alto, Calif.) according to the manufacturer’s instructions. The resulting full-length cDNA PMT1 was cloned into the pGEM-T Easy vector (Promega, Madison, Wis.), sequenced, and submitted to the GenBank nucleotide database. The PMT1 DNA was further subcloned from the pGEM-T Easy vector (Promega) into the pFL61 plasmid after NotI digestion (14). The pFL61-PMT1 constructs and the empty vector pFL61 were used to transform the yeast strain DTY 113 as described previously (14). The pFL61 and pFL61-PMT1-transformed *S. cerevisiae* cells were grown in 50 ml of synthetic dextrose medium without uracil until the optical density at 600 nm was 0.6. Cells were collected by centrifugation at 9,000 × g for 10 min and 4°C, and thiols were extracted as described above.

**HPLC method.** The HPLC system consisted of a low-pressure-gradient solvent delivery pump (model L6200; Hitachi-Merck, Nogent-sur-Marne, France), a spectrofluorimetric detector (model FP-920; Jasco), a delivery pump (model L6200; Hitachi-Merck, Nogent-sur-Marne, France) an HPLC column, and a spectrofluorimetric detector (model FP-920; Jasco). The gradient temperature of 40°C and a flow rate of 0.4 ml/min. Thiols were quantified with a fluorescence calibration curve, corrected for the number of thiol groups present in each analyzed compound. Derivatization conditions were those described previously (25) with modifications. A 100-μl aliquot of fungal extract or standard solution was thawed at 20 to 2°C and transferred to a 1.5-ml polypropylene tube kept in crushed ice, to which 50 μl of a 5% (vol/vol) tris-butylicphosphine solution in dimethylformamide, 20 μl of 2 M NaOH, and 250 μl of 0.2 M borate buffer (pH 9.0) was added. After vortexing for 10 s using a vortex, a nitrogen stream was introduced for 10 s into the tube before capping it, in order to avoid air oxidation. After 5 min at 50°C, 30 μl of a 11.5 mM ABD-F solution in dimethylformamide was added. The resulting mixture was incubated at 50°C for 20 min, and the derivatization reaction was stopped by adding 70 μl of 1 M HCl. Acidified samples were cooled in ice until HPLC analysis (20 μl injected). The acetonitrile proportion during gradient elution was 10% for 5 min, 10 to 20% from 5 to 20 min, 20 to 50% from 20 to 50 min, and 50% from 50 to 55 min. Excitation and emission wavelengths were 385 and 515 nm, respectively.

**Protein extraction and phytochelatin synthase assay.** All purification and centrifugation steps were carried out at 4°C. Approximately 100 mg of mycelia was ground in a chilled mortar and pestle with 10 volumes (wt/vol) of 50 mM HEPES-Na (pH 7.8) containing 10 mM 2-mercaptoethanol, 20% glycerol, 2 mM diethylenetriaminepentaacetate (DTPA), 2% (wt/vol) polyvinylpyrrolidone 40, and 10% (wt/vol) polyvinylpyrrolidone. The homogenate was centrifuged at 16,000 × g for 10 min, the supernatant was collected, and the centrifugation was repeated. Phytochelatin synthase reactions were performed at 35°C for 4 h with 180 μl of mycelia supernatant and 60 μl of phytochelatin synthase buffer (19), and reactions were stopped with 5% (wt/vol) SSA (final concentration). After vortexing, the mixture was centrifuged at 16,000 × g for 10 min, and the resulting supernatant was stored at −80°C until analysis.

**Nucleotide sequence accession number.** The full-length PMT1 sequence was submitted to the GenBank nucleotide database and assigned accession number AY525379.

**RESULTS**

**Detection of thiol-containing compounds.** We separated thiol compounds, ranging from Cys and its derivatives, γ-GluCys and glutathione, to phytochelatins (up to polymerization degree of n = 8) on a reversed-phase column in a gradient mode (Fig. 1A). The ABD-F probe was more sensitive (ca. 10-fold) than Ellman’s reagent (10) and generated fewer interfering by-products than monobromobimane (20), two thiol-derivatizing reagents commonly used in the post- and precolumn mode, respectively. Cys, glutathione, γ-GluCys, and an unidentified, late-eluting peak (compound no. 11; retention time = 49 min) were specifically detected following ABD-F derivatization in Cd-treated *P. involutus* mycelia (Fig. 1B). As a control we used *S. cerevisiae*, which normally lacks phytochelatin synthase, transformed with the Arabidopsis thaliana phytochelatin synthase gene (AtPCS1). Cys, glutathione, and γ-GluCys were detected in extracts of both AtPCS1-transformed (Fig. 1C) and untransformed *S. cerevisiae* cells grown to Cd (50 μM; 24 h). In addition, phytochelatins ranging in size from n = 2 to 5 were present in transformed yeast cells (Fig. 1C) but not in untransformed *S. cerevisiae* cells (data not shown).

**Preliminary identification of compound no. 11.** There was a linear relationship (y = 23.9x + 25.1; r² = 0.99) between the volume of acetonitrile needed for elution of each phytochelatin and the logarithm of their degree of polymerization (n). Compound no. 11 (elution time = 49 min) could correspond to a PC₁₁ of a 3-kDa molecular mass. However, there were no lower-order phytochelatins, i.e., phytochelatins with n values lower than 11, in our chromatograms. The overproduction of compound no. 11 following exposure to Cd also was insensitive to bithionol sulfonimine, a transition-state analog and specific inhibitor of γ-GluCys synthase that is required for glutathione, and thus for phytochelatin synthesis (10). In addition, no phytochelatin synthase activity was detected in *P. involutus* protein extracts, although it was detected in transformed yeast cells (data not shown). We further transformed *S. cerevisiae* cells with a metallothionein gene (PMT1) isolated from isolated from *P. involutus* and analyzed the thiol content. Cys, glutathione, and γ-GluCys were detected in extracts of PMT1-transformed *S. cerevisiae* cells (Fig. 1D). In addition, a late-eluting peak (compound no. 11; retention time = 49 min) was specifically detected in PMT1-transformed yeast cells (Fig. 1D) but is neither pFL61-transformed *S. cerevisiae* cells (data not shown) nor AtPCS1-transformed *S. cerevisiae* cells (Fig. 1C).
Quantitative variations of thiols in Cd-treated cultures of *P. involutus*. The concentration of γ-GluCys (Fig. 2A) and glutathione (Fig. 2B) depended on Cd concentration and duration of exposure. Compound no. 11 (Fig. 1C) also increased drastically relative to controls lacking Cd (Fig. 2C). Cysteine remained unchanged in nearly all treatments (data not shown).

We did not detect any phytochelatins in extracts of *P. involutus* cultures exposed to Cd when we used the same extraction procedure as that used for the AtPCS1-transformed *S. cerevisiae* cells.

**DISCUSSION**

By promoting nutrient exchange between the two partners, mycorrhizae exert a positive influence on plant survival under a variety of unfavorable environmental conditions. Mycorrhizae may be exploited to alleviate stress from metal diffusion and toxicity, but the molecular and cellular mechanisms underlying the sustained metal tolerance of mycorrhizal fungi are largely unknown. We used an improved reverse-phase HPLC analytical procedure based on an ABD-F precolumn derivatization to gain initial insight into the Cd response of the ectomycorrhizal fungus *P. involutus*. This procedure can simultaneously detect mono- and poly-thiols, including an as-yet-unidentified Cd-modulated compound (no. 11). In our HPLC system, homogeneously purified metallothioneins from rabbit liver have retention times of 48 to 52 min, which are similar to that of compound no. 11 (data not shown). Furthermore, by analyzing *S. cerevisiae* cells transformed with a metallothionein gene isolated from *P. involutus*, we detected this late-eluting peak (compound no. 11; retention time = 49 min). Therefore, compound no. 11 probably is a novel metallothionein. Further support of the hypothesis that compound no. 11 is an as-yet-unidentified metallothionein-like compound is provided by the following: (i) the fact that metallothioneins fractionated on a reversed-phase column under acetonitrile-methanol isocratic conditions also can be detected when derivatized on an ammonium 7-fluoro-2,1,3-benzoxadiazole-4-sulfonate (SBD-F) precolumn (18); (ii) the isolation of Cd-responsive metallothioneins in several fungi, including the metallothionein-like polypeptide, GmarMT1, from the arbuscular mycorrhizal fungus *Gigaspora margarita* (14). Neither metallothioneins nor phytochelatins were detected in the ectomycorrhizal fungus *L. laccata* following exposure to Cd (7); however, those investigators used an acidic (TCA) extraction method coupled with post-column DTNB [5,5'-dithiobis(2-nitrobenzoic acid)] derivatization. When we used these conditions in our system, we could no longer detect compound no. 11.

We found that levels of both glutathione and its biosynthetic
precursor, γ-GluCys, increased in Cd-stressed *P. involutus* mycelia. Both of these compounds can form highly stable complexes with Cd and other thiophilic heavy metals, such as Hg, Cu, and Zn. The high Cd content of vacuoles in Cd-treated *Paxillus* mycelia (2) could occur if there were a specific permease, e.g., the Ycf1 membrane transporter of *S. cerevisiae* (15), involved in the translocation (and physical sequestration) of Cd-GSs (or Cd-γ-GluCys2) complexes into *P. involutus* vacuoles. Another fairly important, and somewhat unexpected, result from this work is the complete lack of phytochelatins among the Cd-responsive thiols produced by *P. involutus*. Since phytochelatins are the major metal detoxification compounds in plants, it is even more remarkable that a completely different metal detoxification strategy is utilized by one of their fungal partners to help ensure that the toxic agent is excluded from the symbiosis. From this perspective, *P. involutus* is clearly closer to *S. cerevisiae* than it is to fission yeast or other phytochelatin producers, such as algae and plants (4, 21).

In conclusion, the results presented here demonstrate that an improved HPLC method can improve thiol detection significantly compared to more traditional approaches, thus providing new possibilities for studying the complex mechanisms of interactions between fungi and metals. This work provides new insights into the strategy adopted by ectomycorrhizal fungi to deal with toxic metals, thus improving our understanding of both the ecology and the agricultural applications of these useful fungal symbionts.

**ACKNOWLEDGMENTS**

M. Courbot was supported by an ADEME doctoral fellowship. We thank S. Onetonello (University of Parma) and B. Botton for helpful discussions and critical comments on the manuscript and C. Jacob for producing the pFL61-PMT1 construct.

**REFERENCES**


FIG. 2. Contents of γ-GluCys (A), glutathione (B), and a late-eluting peak (C) (expressed as glutathione equivalents) measured by HPLC with precolumn ABD-F derivatization and fluorescence detection in colonies of *P. involutus* after exposure to CdSO4 for 12 (□), 24 (■), or 48 (△) h. Results are the mean ± standard error of five independent experiments.


