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Heavy metals contaminate numerous freshwater streams and rivers worldwide. Previous work by this group
demonstrated a relationship between the structure of hyporheic microbial communities and the fluvial depo-
sition of heavy metals along a contamination gradient during the fall season. Seasonal variation has been
documented in microbial communities in numerous terrestrial and aquatic environments, including the
hyporheic zone. The current study was designed to assess whether relationships between hyporheic microbial
community structure and heavy-metal contamination vary seasonally by monitoring community structure
along a heavy-metal contamination gradient for more than a year. No relationship between total bacterial
abundance and heavy metals was observed (R2 � 0.02, P � 0.83). However, denaturing gradient gel electro-
phoresis pattern analysis indicated a strong and consistent linear relationship between the difference in
microbial community composition (populations present) and the difference in the heavy metal content of
hyporheic sediments throughout the year (R2 � 0.58, P < 0.001). Correlations between heavy-metal contam-
ination and the abundance of four specific phylogenetic groups (most closely related to the �, �, and
�-proteobacteria and cyanobacteria) were apparent only during the fall and early winter, when the majority of
organic matter is deposited into regional streams. These seasonal data suggest that the abundance of suscep-
tible populations responds to heavy metals primarily during seasons when the potential for growth is highest.

Large-scale mining and other activities have resulted in con-
tamination of many aquatic environments around the world
(50). Changes in the geochemical characteristics of heavy-met-
al-contaminated environments are well documented (for a re-
view, see Moore and Luoma [50]). Heavy-metal contamination
can reduce water quality and has been shown to harm numer-
ous organisms (12, 45, 50, 69). Several studies have examined
the effects of this type of anthropogenic contamination on
aquatic macrobiota (1, 12–15, 33, 47). While heavy-metal ef-
fects on the activity and composition of microbial communities
in terrestrial ecosystems have been well documented (2, 6, 7,
20, 21, 34, 43, 49, 54, 64, 72), relatively little is known about the
effects on aquatic microbial communities. In a prior study by
our group, heavy-metal contamination was implicated as a
structuring factor for hyporheic microbial communities in
streambeds (23).

The hyporheic zone is the region of heterogeneous sedi-
ments beneath and adjacent to the stream channel that is
saturated with a mixture of surface and ground water (46),
providing connectivity between terrestrial, groundwater, and
lotic habitats. As such, this zone is an important component of
lotic ecosystems (11, 26, 35, 58, 60, 68, 70, 71). The microbial
communities in the hyporheic zone play important functional
roles in lotic environments (18, 31, 32, 51, 52, 57, 59). For
example, transformation of dissolved and particulate nutrients
by hyporheic microorganisms can influence the distribution of

aquatic flora and fauna and affect the productivity of vegeta-
tion in the riparian zone (4, 40, 59). Thus, changes induced in
hyporheic microbial communities by anthropogenic heavy-
metal contamination may be translated to higher trophic levels.

In our previous study, we described a relationship between
fluvially deposited heavy metals and the structure of hyporheic
microbial communities in samples taken in September 2000
(23). That study indicated that there is a direct linear relation-
ship between the composition of hyporheic microbial commu-
nities and the level of heavy-metal contamination in the
stream, that the total abundance of bacteria in the hyporheic
zone is unaffected by heavy-metal contamination, and that the
abundance of �-proteobacteria was negatively correlated with
heavy-metal contamination, while the abundance of �-pro-
teobacteria was positively correlated (23).

Although that study provided an initial indication of a rela-
tionship between hyporheic microbial community structure
and fluvially deposited heavy-metal contamination, all of the
data were from a single time point, and we were thus unable to
assess potential seasonal differences in microbial community
response to metal contamination. Seasonal variation in micro-
bial communities has been documented in numerous terres-
trial (25, 38, 63, 65) and aquatic (5, 8, 20, 36, 44, 55, 66)
environments, and we have previously shown that hyporheic
microbial communities inhabiting streams of the western
Rocky Mountains not impacted by mining exhibit seasonal
patterns in diversity, abundance, and activity, which peaks dur-
ing the fall (24, 33).

The purpose of the current investigation was to test the
hypothesis that the influence of fluvially deposited heavy met-
als on hyporheic microbial community structure and popula-
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tion abundance should vary seasonally, such that populations
susceptible to metal effects would exhibit responses primarily
when the potential for microbial growth is high. The rationale
is that such responses should be most apparent when there is
either outgrowth of certain populations or turnover of suscep-
tible populations in the absence of growth, so that the relative
contribution of component populations to the total community
would be altered. To this end, we employed denaturing gradi-
ent gel electrophoresis (DGGE) analysis, real-time quantita-
tive PCR, and direct microscopic enumeration to monitor
changes in hyporheic microbial community structure along a
heavy-metal contamination gradient over the course of more
than a year.

MATERIALS AND METHODS

Study sites. The current study extends prior work at six sites along a metal
contamination gradient. The sampling locations and experimental design have
been described in detail elsewhere (23). Briefly, the rivers and sampling locations
were chosen based on a comprehensive survey of western Montana streams (16).
The six stream sites encompass a range of physical characteristics, such as
average discharge, substratum type, drainage area, and sediment metal concen-
trations (23). Three sites were located within the Clark Fork River watershed:
Silverbow Creek, a headwater tributary of the Clark Fork (third-order stream,
latitude 46°06�28�N, longitude 112°48�17�W, elevation 4,912 ft); Clark Fork
River at Gold Creek (fourth-order stream, latitude 46°35�26�N, longitude
112°55�40�W, elevation 4,172.8 ft); and Clark Fork River at Rock Creek (fourth-
order stream, latitude 46°49�34�N, longitude 113°48�48�W, elevation 3,320 ft).
The remaining streams included the Little Blackfoot River, sampled near Gar-
rison, Mont. (third-order stream, latitude. 46°31�11�N, longitude 112°47�33�W,
elevation 4,344 ft); the Big Hole River, sampled near Glen, Mont. (fourth-order
stream, latitude 45°26�26�N, longitude 112°33�20�W, elevation 4,850 ft); and
Rock Creek, sampled near Missoula, Mont. (third-order stream, latitude
46°43�21�N, longitude 113°40�56�W, elevation 3,519 ft).

Shallow hyporheic-zone sediments (0 to 20 cm) were gathered by hand sieving
as described previously (23). Sediments from each site (with their respective
resident microbial communities) were packed into sterile slotted polyvinylchlo-
ride columns and then replanted into the hyporheic zone in groups of five
columns at three replicate riffles (areas of rough water due to passage over a
shallow sand bar or rocks) in the streambed of each site. Three columns (one
from each replicate riffle) were sampled from each site at five different time
points over the course of more than a year: September 2000 (fall), November
2000 (early winter), April 2001 (spring prerunoff), July 2001 (summer postrun-
off), and October 2001 (fall). The sediments were removed from the columns,
immediately frozen on dry ice at the time of sampling, and then stored frozen at
�70°C until analyzed. Each replicate sample was treated as independent for all
statistical analyses.

Geochemical analyses. Total recoverable metals associated with sediment
samples were measured and converted to contamination index (CI) values as in
the previous study (23). CI comprises a cumulative measure of the amounts of
As, Cd, Cu, Pb, and Zn in sediment and is calculated as CI � �[(log Men/log Men

at RC)/number of metals included in index), where n � As, Cd, Cu, Pb, and Zn
(53). Sediment-associated heavy-metal concentrations from these six sites
spanned a linear range over two orders of magnitude (23). Dissolved anions
(NO2�, NO3�, and PO4

3�) in the pore water of each sampled riffle were mea-
sured as an estimate of the nutrients available at each site over time with the
techniques described previously (23). The general physical characteristics of each
stream throughout the year were obtained from the U.S. Geological Survey
Montana stream-flow website (http://waterdata.usgs.gov/mt/nwis/current? type �
flow).

DNA extraction. Total bacterial community DNA was purified from 1 g of each
sample for DGGE and real-time quantitative PCR analyses as described previ-
ously (23, 24).

DGGE and gel pattern analysis. DGGE analysis of partial 16S rRNA gene
sequences was performed to determine and compare the composition of the
hyporheic microbial communities along the contamination gradient at each time
point. PCR amplification for DGGE analysis was performed with the conserved
general 16S rRNA gene primers 536fC (5�-CGC CCG CCG CGC CCC GCG
CCC GGC CCG CCG CCC CCG CCC CCA GCM GCC GCG GTA ATW
C-3�) and 907r (5�-CCG TCA ATT CMT TTR AGT TT-3�) (23). PCR amplicons

generated from each sample were separated by DGGE with the Bio-Rad D-
GENE System (Bio-Rad Laboratories, Hercules, Calif.). Detailed descriptions of
PCR conditions, DGGE gel reagents, denaturant range, and running conditions
are provided elsewhere (24). Briefly, a linear gradient ranging from 25% to 60%
denaturant (7 M urea, 40% [wt/vol] formamide) in a 6% acrylamide gel matrix
was used. Each gel was run at 60°C and 30 V for 30 min, after which the voltage
was increased to 130 V for 5 h.

Following electrophoresis, gels were stained for 2 h at 37°C with a 5	 con-
centration of SYBERGreen I (BioWhittaker Molecular Applications, Rockland,
Maine). To eliminate variation between individual gels, digital images of DGGE
gels were normalized based on standards included in each gel with GelCompar
version 4.0 software (Applied Maths, Kortrijk, Belgium). Gel patterns were
analyzed with GelCompar, and a similarity index based on the dice coefficient
was calculated as described previously (24). Similarity index values were con-
verted to dissimilarity values by subtracting them from 100 and then related to
the CI by using linear modeling to determine whether the previously observed
relationship between hyporheic microbial community structure and heavy-metal
contamination (23) varied seasonally.

Real-time quantitative PCR. The development of a suite of group-specific
primers derived from sequences obtained from these six sites that detect organ-
isms most closely related to the 
-, �-, and �-proteobacteria and cyanobacteria
(groups I, II, III, and IV, respectively) has been described previously (23). These
primers were used to quantify the abundance and distribution of each group via
real-time quantitative PCR with a Bio-Rad iCycler (Bio-Rad) and the SYBER-
Green I detection method. Briefly, each 25-�l PCR mixture contained a 1	
concentration of a modified 10	 PCR buffer (Roche Diagnostics, Mannheim,
Germany) (10 mM Tris-HCl, 0.3 mM MgCl2, 50 mM KCl, pH 8.3, 1:10,000
dilution of SYBERGgreen I), 6.25 mM deoxynucleoside triphosphate mix, 1
pmol of each primer, 7% dimethyl sulfoxide, and 1.25 U of Taq polymerase
(Roche Diagnostics). Details of the PCR protocols, construction of quantitative
PCR standards for each phylogenetic group, and determination of PCR target
copy numbers per gram of sediment have been described previously (23).

Microscopic enumeration of bacteria. Total bacterial cells associated with 1-g
samples of lyophilized sediment were enumerated as described before (33). For
each sample, 30 fields of view or 400 bacterial cells were counted on each slide.

Statistical analysis of data. Linear modeling and multivariate statistics were
employed to explore the relationship between microbial community structure
and fluvially deposited heavy metals and to determine whether this relationship
varied seasonally. Linear modeling was used to determine if there was a direct
relationship between the level of heavy-metal contamination (CI) and (i) the
composition of hyporheic microbial communities, (ii) the total abundance of
bacteria in the hyporheic zone, and (iii) the abundance of the monitored phy-
logenetic groups.

Multivariate statistics (multivariate analysis of variance and analysis of vari-
ance) were used to determine whether the abundance of the four phylogenetic
groups differed among sites and between sampling dates. Specifically, multivar-
iate analysis of variance was used to analyze phylogenetic group abundance data
to determine whether the abundance of all four monitored groups changed
significantly over time and if there were differences between sites. By contrast,
univariate analysis of variance was used to determine if any of the individual
phylogenetic groups varied significantly with respect to site or sampling date.

Differences in phylogenetic group-level abundance, with respect to site, de-
tected by either statistical test should be due to the heavy-metal contaminants.
Furthermore, both statistical procedures can test for interactions of the two
factors, site and sampling date, to indicate if the abundance of all of the moni-
tored phylogenetic groups (multivariate analysis of variance) or individual phy-
logenetic groups (analysis of variance) changed within each site over time. In
these analyses, a significant interaction of site and sampling date (site 	 sampling
date) indicates seasonal variation in the relationship between group-level abun-
dance and the level of contamination present in each site.

All statistical tests were performed with the Number Cruncher Statistical
System (NCSS) 2001 software (NCSS, Kaysville, Utah). A P value of 0.05 was set
as the significance threshold for all Tukey-Kramer multiple-comparison tests.
Values for bacterial cell abundance and abundance of individual phylogenetic
groups were log transformed prior to statistical analyses.

RESULTS

Contamination index. The concentrations of each metal
were relatively constant over the course of the study (2001 to
2002) (Fig. 1). There was no significant variation in sediment-
associated metal levels over the course of this study (FAs �
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0.21, P � 0.95; FCd � 0.05, P � 0.95; FCu � 0.59, P � 0.56; FPb

� 0.32, P � 0.72; FZn � 0.07, P � 0.93). Therefore, the means
and standard errors of the CI values for all time points at each
site were used for the linear modeling and statistical analyses
described below (SB, 1.90 � 0.06; GC, 1.22 � 0.07; CF, 1.02 �
0.04; LB, 0.72 � 0.06; BH, 0.28 � 0.03; and RC, 0.03 � 0.02).

Microscopic enumeration. Direct microscopic enumeration
was used to estimate total bacterial abundance at each site over
the course of this study (Fig. 2). There were significant differ-
ences in cells/g values among the sampling locations (Fsite �
15.29, P  0.001), among sampling dates (Fdate � 10.04, P 
0.001), and these values were significantly affected by the in-
teraction between site and time (Fsite 	 time � 4.66, P  0.001).
However, a posthoc multiple-comparison test revealed that
just two of the GC samples from two time points (September
2000 and October 2001) were the cause of the significant dif-
ference between sites. No significant relationship between total
bacterial abundance and CI was detected during the course of
the study (Table 1), nor were these values significantly corre-
lated with any of the dissolved-anion values (P � 0.07 to 0.99)
(not shown).

DGGE and pattern-matching analysis. DGGE analysis was
used as a means of describing and comparing the composition
of microbial populations at each site during 2000 to 2001.
Visual examination of DGGE patterns can be subjective, mak-
ing it tenuous to relate perceived DGGE pattern differences to
other environmental factors. To lessen potential subjective
bias, we used the Pearson coefficient function of the GelCom-
par software to generate a similarity matrix comparing the

composition of microbial communities within and between
each site along the metal contamination gradient over the
course of this seasonal study. In this analysis, patterns of bands
representing populations are compared, independent of their
abundance, to determine similarity (or dissimilarity) in the
composition of communities independent of the abundance of
the component populations.

To determine whether community composition could be
correlated with the measured environmental factors, the
means of dissimilarity scores (100 � similarity scores) for each
between-site comparison were plotted against a range of pre-
dictor variables, including the difference in dissolved NO2�,
NO3�, and PO4

3� (data not shown) and the difference in the
metal content of the sediments (Fig. 3). Correlation coeffi-
cients relating microbial community composition with dis-
solved-anion measurements were consistently low (R2 range �
0.36 to 0.05), with a trend towards nonsignificance (P value
range � 0.01 to 0.25) (Table 2). None of the individual anions
demonstrated consistent, strong, and significant relationships
with microbial community composition. However, if all data
points from the entire sampling time course were included in
the regression, a weakly significant relationship was detected
between each dissolved anion and community composition be-
tween sites (mean R2 � 0.13, mean P  0.001) (Table 2). By
contrast, a consistently significant (R2 � 0.58, P  0.001) and
strong relationship between microbial community composition
and heavy metal content of the sediments was detected (Fig. 3
and Table 1). The strength of this relationship varied little

FIG. 1. Means and standard errors of heavy-metal concentrations in sediment for all time points in 2000 and 2001. Log Cd concentrations were
not plotted because these values were negative. Log Cd concentrations measured at each site were: Silverbow Creek (SB), 0.23 � 0.3 �g/g; Gold
Creek (GC), �0.24 � 0.16 �g/g; Clark Fork River at Rock Creek (CF), �0.34 � 0.01 �g/g; Little Blackfoot River (LB), �0.58 � 0.02 �g/g; Big
Hole River (BH), �0.71 � 0.13�g/g; and Rock Creek (RC), �0.62 � 0.08 �g/g).
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throughout the course of the study (R2 range � 0.62 to 0.77)
(Table 1).

Quantitative PCR analyses. Real-time quantitative PCR
was used to monitor changes in the relative abundance of four
specific microbial phylogenetic groups inhabiting the hypo-
rheic zone of each site over the course of the study. The
phylogenetic groups that were monitored, groups I, II, III, and
IV, were most closely related to the 
-, �-, and �-proteobac-
teria and cyanobacteria, respectively.

Multivariate analysis of the data indicated that the quanti-
tative PCR response variables were significantly affected by
both the site and sampling date (Wilks Lamda Fsite � 1.73, P
� 0.054, and Fdate � 3.69, P  0.001). However, the interaction
of the two factors, site and date, was not significant (Wilks
Lambda Fsite 	 date � 0.94, P � 0.623). To determine which
response variables (i.e., which phylogenetic groups in the hy-
porheic community) were responsible for these significant in-

teractions, individual analysis of variance analyses were per-
formed on each quantitative PCR response variable. The
abundance of group I was significantly affected by the sampling
site (Fsite � 3.10, P � 0.03) but not by the sampling date (Fdate

� 2.44, P � 0.08). The opposite was true for group II, which
was significantly affected by the sampling date (Fdate � 3.85, P
� 0.017) but not by the sampling site (Fsite � 1.28, P � 0.31).
Similarly, group III was significantly affected by the sampling
date (Fdate � 14.13, P  0.001) but not the site (Fsite � 1.85, P
� 0.15), as was group IV (Fdate � 4.47, P � 0.009; Fsite � 1.87,
P � 0.14).

Linear modeling was used to test for a relationship between
sediment metal content and the abundance of each phyloge-
netic group by plotting the values against the CI (Fig. 4). Of the
four phylogenetic groups monitored, three exhibited a signifi-
cant relationship with CI (P  0.05) (Table 1 and Fig. 4).
However, the strength and significance of these relationships

FIG. 2. Means and standard errors of bacterial cell densities associated with sediments gathered at each site and time point as determined by
direct microscopic enumeration. No values are reported for the Big Hole River (BH) site during the November 2000 sampling due to adverse
conditions at the site. Data for September 2000 samples were reported previously (23). See the legend to Fig. 1 for abbreviations.

TABLE 1. Correlation coefficients and significance values for linear regressions of microbial community response variables versus CI
for 2000 to 2001a

Date sampled

Log no. of
bacterial cells/g

DGGE dissimilarity
scores Group I Group II Group III Group IV

R2 P R2 P R2 P R2 P R2 P R2 P

September 2000 0.34 0.23 0.67 0.001 0.22 0.34 0.67 0.04 0.70 0.04 0.01 0.95
November 2000 0.01 0.93 0.63 0.001 0.96 0.01 0.36 0.28 0.01 0.91 0.15 0.51
April 2001 0.60 0.12 0.77 0.001 0.80 0.04 0.62 0.10 0.74 0.06 0.37 0.26
July 2001 0.08 0.59 0.66 0.001 0.04 0.69 0.20 0.37 0.27 0.29 0.04 0.68
October 2001 0.01 0.86 0.62 0.001 0.32 0.24 0.16 0.43 0.05 0.66 0.04 0.87
2000–2001 0.01 0.83 0.58 0.001 0.22 0.01 0.04 0.28 0.11 0.08 0.01 0.77

a Data for September 2000 are from reference 23.
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were not constant over the course of the study (Table 1). By
separately analyzing data for each time point, we were able to
reveal for which phylogenetic groups the abundance was cor-
related with the CI and when that relationship was significant
(Fig. 4). Group I was significantly negatively correlated with CI
only during winter (November 2000) and early spring (April
2001) (R2 � 0.96, P � 0.003 and R2 � 0.80, P � 0.038,
respectively) (Fig. 4). Group II had a negative correlation with
CI for most of the year, but it was only significant during the
fall of 2000 (September 2000) (R2 � 0.67, P � 0.044). Group
III tended to be positively correlated with CI; this relationship
was only significant during the fall of 2000 (R2 � 0.70, P �
0.037) but demonstrated a positively correlated trend (P 
0.10) during the early spring of 2001) (R2 � 0.74, P � 0.059).
Group IV appeared to be unaffected by CI, with correlation
coefficient values (R2) ranging between 0.001 and 0.37. At no
time was the abundance of group IV significantly correlated

with CI (P � 0.05). There were no significant linear correla-
tions between dissolved-anion concentrations and the abun-
dance of the monitored phylogenetic groups (data not shown).

DISCUSSION

The objective of this study was to assess the impact of sea-
sonal changes on the previously established relationship be-
tween heavy-metal contamination and microbial community
structure in the hyporheic zone of rivers in western Montana
(23). To this end, we examined and compared hyporheic mi-
crobial community structure at six river sites where there was
a heavy-metal contamination gradient at five time points over
the course of more than a year. Such gradients can be useful
for studying the effects of contaminants on natural populations
(3, 19, 33, 34, 54, 64). All of the enriched metals in the con-
taminated sites, including the five used to calculate the CI,

FIG. 3. Means and standard errors of differences in community composition between sites versus differences in the CI. Comparisons are
separated by sampling date, as indicated in the legend. Line represents a regression of all points on the graph. Data for September 2000 samples
were reported previously (23).

TABLE 2. Correlation coefficients (R2) and significance levels of DGGE similarity scores versus each dissolved inorganic nutrienta

Environmental
factor

September 2000 November 2000 April 2001 July 2001 October 2001 2000–2001

R2 P R2 P R2 P R2 P R2 P R2 P

NO2� 0.09 0.17 0.37 0.01 0.12 0.21 0.07 0.25 0.11 0.14 0.12 0.01
NO3� 0.24 0.03 0.05 0.36 0.31 0.03 0.07 0.23 0.14 0.06 0.13 0.01
PO4

3� 0.14 0.01 0.36 0.02 0.17 0.14 0.07 0.25 0.13 0.11 0.14 0.01

a See Table 1, footnote a.
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covary, and thus it is difficult to determine the effects of an
individual heavy metal on hyporheic-zone microbial commu-
nity structure (56). This potential limitation was overcome via
the development of the CI, which provides a means for relating
measured microbial response variables to an ecologically rel-
evant estimate of the total metal contamination to which the
hyporheic community is exposed (23).

Sediment-associated metal concentrations rather than pore
water values were employed in developing the contamination
index because the predominant microbial biomass in the hy-
porheic zone is sediment surface associated (24) and soluble
metal concentrations were very low. Indeed, only the two most
highly contaminated sites (SB and GC) had detectable soluble
concentrations of As, Cd, Cu, and Zn, and none of the sites
had detectable levels of soluble Pb in the pore water. Sedi-
ment-associated metals appear to be bioavailable (17), and
previous work has described diurnal variations in dissolved-
metal levels in the upper Clark Fork River (9), indicating an
equilibrium between sorbed and aqueous-phase metals in this
system. Thus, the use of a contamination index based on total
metals associated with sediments should be a valid estimate of
the magnitude of contamination to which hyporheic microbial
communities are exposed. By monitoring hyporheic microbial

communities along the metal contamination gradient over the
course of a year and relating these changes to the contamina-
tion index, it was possible to detect seasonally dependent re-
sponses in microbial community structure.

DGGE pattern-matching analysis indicated that the fluvially
deposited heavy metals impose a consistent selective pressure
on the total hyporheic microbial community throughout the
year (Fig. 3). The strength of this consistently significant rela-
tionship (P  0.001) is relatively constant throughout the year,
with correlation coefficient values ranging between 0.62 and
0.77. Conversely, the correlations between community compo-
sition and dissolved-nutrient levels were low and demonstrated
a nonsignificant trend (Table 2). This implies that, while dis-
solved nutrients may have some effect on hyporheic microbial
community composition, the effects of heavy metals far out-
weigh this influence.

The lack of correlation between total bacterial biomass and
the sediment metal content was not unexpected, as similar
results have been noted in soils (21, 34, 43). Although there is
a potential for a relationship to exist between CI and sediment-
associated bacterial biomass, it may be undetectable at the
total community level due to the low resolution of direct mi-
croscopic enumeration (41). Consequently, seasonal fluctua-

FIG. 4. Means and standard errors of group-level abundances as measured by quantitative PCR versus the CI. Symbols for the sampling time
points: F, September 2000; ■, November 2000; Œ, April 2001; �, July 2001; �, October 2001. Regression lines are provided only for time points
that indicated significant linear relationships between the group-level abundance and the CI. Data for samples taken in September 2000 were
reported previously (23).
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tions in relationships between CI and group-level abundances,
discussed below, may not be detected in total bacterial biomass
measurements. Furthermore, bacterial biomass tends to be
correlated with the quantity of available organic matter in soils
(42, 43, 54) and aquatic systems (22, 27-31, 66). Since the sites
in the current study show little variation in sediment-associated
bacterial biomass, it appears that the quantity of dissolved
organic carbon available to the hyporheic zone within each site
is similar (23), while the composition of the total microbial
community at each site along the metal contamination gradient
differs. These data indicate that increased sediment metal
loads select for metal-tolerant hyporheic communities that
maintain bacterial cell densities similar to those in uncontam-
inated streams throughout the year and demonstrate that met-
al-related differences in total community structure are a year-
round phenomenon.

Although the relationship between CI and total community
composition (presence of populations independent of their
abundance) determined by DGGE was relatively constant
throughout the year, population abundance measurements at
the group level (with quantitative PCR) indicated that the
relationships between CI and the abundance of groups I, II,
and III varied seasonally. This variation may be due to seasonal
changes in nutrient availability or other environmental factors
affecting this predominantly heterotrophic hyporheic microbial
community.

Determining precisely which environmental factors were
controlling these group-level responses was beyond the scope
of this project. However, previous studies in other streams
have identified exogenous organic carbon as an important
growth substrate for bacteria in the hyporheic zone (10, 29, 59).
The majority of exogenous organic carbon that enters lotic
ecosystems in this montane region arrives during the fall and
early winter, primarily through deposition of leaf litter (18, 59).
This coarse organic matter is processed by aquatic insects,
fungi, and bacteria and is eventually entrained in the hyporheic
zone as dissolved organic carbon (48, 67). Entrainment of
dissolved organic carbon normally promotes increased respi-
ration and growth in hyporheic microbial communities (10, 29,
59). Thus, elevated heavy-metal levels in the hyporheic zone
appear to inhibit the growth of group I and II organisms during
the fall and early winter, when conditions may otherwise favor
their growth. Conversely, metals may promote the growth of
group III organisms at these times, perhaps because they can
tolerate metals and thus exhibit growth on available nutrient
inputs not being consumed by inhibited populations. In other
words, group III may be released from competition with
groups I and II by the heavy-metal effects on those groups.

The phylogenetic groups monitored were defined based on
analysis of partial 16S rRNA sequences from the study sites
and appear to represent specific bacterial phyla and subdivi-
sions. Group I consists of members of the 
-proteobacteria,
group II is made up of representatives of the �-proteobacteria,
group III comprises members of the �-proteobacteria, and the
members of group IV align with known cyanobacteria. The
members of groups I, II, and III, which exhibited significant
correlations with sediment metal content, are predominantly
heterotrophic, can form biofilms, and are commonly found in
aquatic environments (39). It seems likely that these three
groups represent established and active members of the hypo-

rheic community and thus are affected by heavy-metal contam-
inants in this environment. Groups I and II (representing

-proteobacteria and �-proteobacteria, respectively) have not,
to our knowledge, previously been monitored in metal-contam-
inated sediments or soils. However, there are �-proteobacteria
that are tolerant to Cd, Cu, and Zn (37, 61, 62), three metals
included in the CI of the current study.

The lack of any correlation between CI and group IV (rep-
resenting cyanobacteria) abundance may be due to the tran-
sient nature of this group in the hyporheic zone. Since the
hyporheic zone is dark, it would not readily support active
growth of photosynthetic organisms. Since group IV organisms
are most likely entrained from surface water and not perma-
nent and active members of the hyporheos, they may not ex-
hibit toxic effects from heavy metals in the hyporheic zone.

To our knowledge, this is the first indication that the effects
of fluvially deposited heavy metals on hyporheic microbial
community structure vary seasonally. While the effects of sed-
iment metal content on total microbial community composi-
tion are detectable throughout the year, the correlation with
the abundances of certain specific populations or groups is
most prevalent during fall and early winter. Thus, it is impor-
tant to consider seasonality when designing sampling regimens
to monitor the effects of fluvially deposited heavy metals and
likely other perturbations on phylogenetic group abundance.

While these results are based on studying just six river sites
within a heavy-metal contamination gradient, it is anticipated
that similar responses would be detected in other streams
experiencing similar types of heavy-metal contamination. By
describing and understanding such seasonal patterns, it may be
possible to design better monitoring strategies for detecting
immediate as well as long-term impacts of heavy-metal con-
tamination on the microbiota of lotic ecosystems.
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