High-Level Expression and Secretion of Methyl Parathion Hydrolase in *Bacillus subtilis* WB800

Xiao-Zhou Zhang, Zhong-Li Cui, Qing Hong, and Shun-Peng Li*

Department of Microbiology, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University, 6 Tongwei Road, Nanjing, Jiangsu 210095, People’s Republic of China

Received 26 September 2004/Accepted 13 January 2005

The methyl parathion hydrolase (MPH)-encoding gene *mpd* was placed under the control of the P43 promoter and *Bacillus subtilis* nprB signal peptide-encoding sequence. High-level expression and secretion of mature, authentic, and stable MPH were achieved using the protease-deficient strain *B. subtilis* WB800 as the host.

Organophosphate compounds are used extensively in agricultural and domestic pest control and as chemical warfare agents; these compounds inhibit the acetylcholinesterase of animals (8). Mass application of these compounds in the environment causes serious problems. Organophosphate hydrolase (OPH) isolated from soil microorganisms detoxified organophosphates effectively (14, 18), and bioremediation of organophosphate compounds in the environment by using bacterial enzymes may provide an efficient, convenient, and economical method for detoxification. We previously isolated *Plesiomonas* sp. strain M6, which is capable of hydrolyzing methyl parathion at high efficiency (5), and the gene (*mpd*) encoding a novel methyl parathion hydrolase (MPH) was cloned (5) and expressed in *Escherichia coli* (9). However, the previous work showed that *E. coli* could process only a small proportion of the inactive precursor polypeptide, comprising the signal peptide and the mature enzyme, to produce the active MPH (9).

Most microorganisms that produce OPH are gram-negative bacteria, and the OPH is located intracellularly or secreted into the periplasm. The outer membrane acts as a permeability barrier and limits interaction between the pesticides and OPH residing within the cells (12). This bottleneck reduces the application efficacy. *Bacillus subtilis* can serve as an efficient and safe host for recombinant protein secretion (3, 4, 7, 16, 17), and downstream purification is greatly simplified. In this work, the *mpd* gene was fused with the nprB signal peptide-encoding sequence, and the organophosphate hydrolase was expressed and secreted in *B. subtilis* under the control of the P43 promoter (20).

The methyl parathion hydrolase-encoding gene *mpd* (Gen-Bank accession no. AF338729) cannot be expressed in *B. subtilis* by using its own promoter. To achieve expression and secretion of MPH in *B. subtilis*, the secretion signal peptide-encoding sequence of the nprB gene was fused with the mature *mpd* gene. A typical cleavage site (ASA-A) (19) for signal peptidase I was designed for the release from *B. subtilis* MPH with an authentic N terminus (Fig. 1B). The mature *mpd* gene sequence (9) was cloned using the primer pair P1 (5'-G CGCTGAGCACCCGAGGTG-3') and P2 (5'-CGCAAGCTTTATGTTTTCGC-3') from plasmid pMT1 (5). To introduce the PstI site (underlined) upstream, the codon GCC encoding the first amino acid of mature MPH was modified to GCA (Fig. 1B). Two additional stop codons (TGATGA) and the HindIII site (underlined) were introduced with primer P2. Primers P3 (5'-CGCGGATCCTGATAGGTGTATATTTTGCGC-3') and P4 (5'-CTTGTGTCAAGTGGGCTAGTCATCTTCTTTCTTTTC-3') were used to clone the P43 promoter sequence from *B. subtilis* 168 (2) chromosomal DNA, and the BamHI site (underlined) was introduced in the forward primer P3. Primers P5 (5'-AAGAGAGGAATGTACACATGCGCAACTTGACCGAAAG-3') and P6 (5'-CGCGTCTGCACTTGAGGATG-3') were used to clone the signal peptide-encoding sequence of the *nprB* gene from *B. subtilis* 168 chromosomal DNA, and the PstI site (underlined) was introduced in the reverse primer P6. The initial codon (TTG) of the *nprB* signal peptide-encoding sequence was modified to ATG in primer P5. The two PCR fragments of the P43 promoter and the *nprB* signal peptide-encoding sequence were spliced by overlap extension (11). The spliced fragment and the mature *mpd* gene PCR fragment were then digested with PstI and ligated together. The ligation product was purified and digested with BamHI/HindIII. The *mpd* gene with the P43 promoter and *nprB* signal peptide-encoding sequence was cloned into pUBC19, and the recombinant plasmid was designated pP43NMK (Fig. 1A).

Competent cells of *B. subtilis* WB800 (21) were transformed with pP43NMK. Transformants able to hydrolyze methyl parathion were screened on super-rich medium (10) agar plates containing 10 μg/ml kanamycin and 100 μg/ml methyl parathion, where they form yellow halos of radii >1 cm. A preculture of WB800(pP43NMK) was grown overnight at 37°C in super-rich medium with kanamycin (10 μg/ml), and 1% (vol/vol) of this preculture was used to inoculate 500 ml of the same culture medium in a 1-liter flask. The culture was maintained at 37°C, and 20-μl aliquots were taken...
over time and assayed for MPH according to the method of Cui et al. (6).

In previous studies, MPH was expressed and secreted in B. subtilis 168, but because the host produced numerous proteases, MPH was expressed only at low levels (0.2565 U/ml after 12 h, decreasing to 0.0967 U/ml after 24 h). B. subtilis WB800 is deficient in eight proteases and therefore can serve as an excellent host for the expression of foreign proteins. In this work, recombinant MPH was secreted into the culture medium via the nprB signal peptide with some apparent improvement in enzyme stability. Time courses for bacterial growth and secreted MPH activity are shown in Fig. 2. The P43 promoter is a well-characterized overlapping promoter (20). The results show that, under the control of the P43 promoter, the mpd gene was continuously expressed throughout the exponential growth phase and into the late stationary phase. MPH activity in the culture medium accumulated to a maximum level after 96 h of cultivation, declined to approximately 20 U/ml at 180 h, and then remained at a relatively stable level for a further 150 h. A genome-based survey of the secretome of B. subtilis has shown that a total of at least 27 proteases are present in the membrane, cell wall, and culture medium (19). The expression host used in this study is deficient in eight proteases. However, a certain degree of MPH degradation was observed, indicating that the enzyme may be sensitive to an as-yet-uncharacterized protease produced by the host during the late stationary phase or to intracellular proteases released during cell lysis.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis of the MPH were performed as described previously (9). Recombinant MPH secreted by B. subtilis WB800(pP43NMK) was evident as a distinct band at a position equivalent to a molecular mass of approximately 34 kDa (Fig. 3), confirming that the recombinant MPH was identical in size to the MPH from Plesiomonas

FIG. 1. (A) Construction of pP43NMK, a B. subtilis expression vector for the production and secretion of MPH. See the text for a detailed description of the construction of pP43NMK. P43 and SP represent the P43 promoter and the nprB signal peptide-encoding sequence from B. subtilis, respectively. ori, amp, rep, and km represent the sequences coding for the ColE1 replication origin, ampicillin resistance marker, replicase, and kanamycin resistance marker, respectively. The arrows show the transcription directions for these genes. (B) Nucleotide sequences of the P43 promoter fragment, nprB signal peptide-encoding sequence, and part of the mpd gene. The deduced amino acid sequence of the neutral protease B signal peptide is underlined. The “−10” and “−35” regions of the promoters (recognized by σ^a and σ^b factors), the transcription start site (“+1”), and the ribosome binding site (RBS) are indicated. The vertical arrow indicates the predicted cleavage site for the signal peptidase I.

FIG. 2. MPH activity in B. subtilis WB800(pP43NMK) cultures during the exponential and stationary growth phases.

FIG. 3. SDS-PAGE and zymogram analysis of MPH production by M6 and WB800 carrying pUBC19 and pP43NMK. The supernatant of the M6 cell fraction and the culture supernatant of WB800 harboring different vectors were analyzed on a 12% SDS-polyacrylamide gel. The partial gel containing lanes 5 to 7 was excised for the zymogram analysis, and the remaining gel was stained with Coomassie brilliant blue R250. Lane 1, molecular mass markers; lanes 2 and 5, M6; lanes 3 and 6, WB800(pUBC19) (negative control); lanes 4 and 7, WB800(pP43NMK).
expression level of MPH was markedly higher than the 20.5 signal peptide sequence had been processed correctly. 

nprB spectrometry as AAPQVR, demonstrating that the mance liquid chromatography-electrospray ionization mass sequence of purified MPH was determined by high-perfor-

apparent molecular mass of 34 kDa as determined by SDS-PAGE. eluted enzyme produced a single band following SDS-PAGE. 

86.3% (the deviation between different batches was less than 
distinct bands could be detected by SDS-PAGE after this purifi-

the same buffer at a flow rate of 0.5 ml/min, and only four 
loading and elution buffers to pH 7.5, most of the contaminat-

m pH 7.5) at 4°C. By adjusting the pH of the loading and elution buffers to pH 7.5, most of the contaminat-

HEPES buffer (pH 7.5) with two changes of buffer. The su-
m of the People’s Republic of China (no. BK200171) and the National Natural Science Foundation (no. 30300005) and by the 863 Hi-Tech Research and Development Prog-

We thank Daniel Zeigler from the Bacillus Genetic Stock Center and Sui-Lam Wong from the University of Calgary for providing bacterial strains and plasmid vectors. We are also grateful to John Buswell from the Edible Fungi Institute, Shanghai Academy of Agricultural Sciences, for the helpful comments and linguistic revision of the manuscript.

This work was supported by grants from the Jiangsu Province Nat-
ural Science Foundation of the People’s Republic of China (no. BK200171) and the National Natural Science Foundation (no. 30300005) and by the 863 Hi-Tech Research and Development Program of the People’s Republic of China (project no. 2004AA214102 and 2004AA24070).

REFERENCES


5. Cui, Z., S. Li, and G. Fu. 2001. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Envi-


