RNA-Based Stable Isotope Probing and Isolation of Anaerobic Benzene-Degrading Bacteria from Gasoline-Contaminated Groundwater

Yuki Kasai,1,* Yoh Takahata,2 Mike Manefield,3 and Kazuya Watanabe1

Marine Biotechnology Institute, Heita, Kamaishi, Iwate 026-0001,1 and Taiisei Corporation, Nase, Totsuka-ku, Yokohama 245-0051,2 Japan, and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia3

Received 29 November 2005/Accepted 28 February 2006

Stable isotope probing (SIP) of benzene-degrading bacteria in gasoline-contaminated groundwater was coupled to denaturing gradient gel electrophoresis (DGGE) of DNA fragments amplified by reverse transcription-PCR from community 16S rRNA molecules. Supplementation of the groundwater with [13C6]benzene together with an electron acceptor (nitrate, sulfate, or oxygen) showed that a phylotype affiliated with the genus Azoarcus specifically appeared in the 13C-RNA fraction only when nitrate was supplemented. This phylotype was also observed as the major band in DGGE analysis of bacterial 16S rRNA gene fragments amplified by PCR from the gasoline-contaminated groundwater. In order to isolate the Azoarcus strains, the groundwater sample was streaked on agar plates containing nonselective diluted CGY medium, and the DGGE analysis was used to screen colonies formed on the plates. This procedure identified five bacterial isolates (from 60 colonies) that corresponded to the SIP-identified Azoarcus phylotype, among which two strains (designated DN11 and AN9) degraded benzene under denitrifying conditions. Incubation of these strains with [14C]benzene showed that the labeled carbon was mostly incorporated into 14CO2 within 14 days. These results indicate that the Azoarcus population was involved in benzene degradation in the gasoline-contaminated groundwater under denitrifying conditions. We suggest that RNA-based SIP identification coupled to phylogenetic screening of nonselective isolates facilitates the isolation of enrichment/isolation-resistant microorganisms with a specific function.

Contamination of groundwater with gasoline is a serious environmental problem, since it may affect drinking water resources and has impacts on the oligotrophic environment. Benzene, toluene, and xylene (BTX) are the major components of gasoline-derived contaminants and are of great concern because they are toxic (15) and soluble in water (16). Among them, benzene is of particular health concern due to its carcinogenicity (2, 53).

Benzene is known to be biodegraded readily under aerobic conditions. However, contamination of subsurface aquifers with gasoline often results in the development of anaerobic zones (5, 13, 30), where benzene is particularly persistent. Many studies have therefore investigated anaerobic benzene degradation in the environment, showing that degradation occurs, albeit slowly, under nitrate-reducing (10, 11, 12, 14, 36, 51, 52), sulfate-reducing (17, 31), iron-reducing (6, 7, 23, 32, 33, 44), perchlorate-reducing (12, 14), and methanogenic conditions (21, 27, 52). Although these studies have identified microbial populations occurring in these enrichments by using molecular techniques (40, 44, 52), no studies have succeeded in isolating benzene-degrading organisms from them. So far, only two bacterial isolates, both affiliated with the genus Dechloromonas, have been shown to anaerobically degrade benzene in axenic cultures (11, 12, 14), although they were isolated after enrichment on different substrates, such as 4-chlorobenzoate.

We have been studying a gasoline-contaminated subsurface aquifer undergoing monitored natural attenuation. Geochemical analyses have suggested that intrinsic anaerobic BTX biodegradation has occurred in the aquifer ~50 m downstream of the gasoline source area, where electron acceptors such as oxygen, nitrate, and sulfate were depleted, with corresponding reductions in BTX concentrations (49). Molecular ecological analyses have revealed that the community structures in the biodegradation zone are different from those in surrounding uncontaminated zones. Several phylotypes affiliated with the genus Azoarcus were detected as the major populations in the biodegradation zone (49).

The present study was carried out to identify microorganisms degrading benzene in the gasoline-contaminated aquifer. Recently, scientists have developed culture-independent approaches for linking microbial community function to the phylogenetic identities of key organisms (9, 29, 37, 39). Stable isotope probing (SIP) is one such method, enabling the identification of members in a microbial community responsible for specific activities based on the incorporation of stable isotopes (e.g., 13C) into cellular components (34, 35, 37). This study used RNA-based SIP (RNA-SIP) to label and identify [13C6]benzene-degrading organisms. RNA-SIP exploits the relatively efficient 13C incorporation into RNA compared to that into DNA (20, 37), which is particularly useful when substrate degradation and growth rates are likely to be slow, as in the context of anaerobic benzene degradation. In addition, SIP information was confirmed by isolating RNA-SIP-identified bacteria and analyzing their benzene-degrading ability under denitrifying conditions.

* Corresponding author. Mailing address: Marine Biotechnology Institute, 3-7-5-1 Heita, Kamaishi, Iwate 026-0001, Japan. Phone: 81-193-26-6544. Fax: 81-193-26-6592. E-mail: yuki.kasai@mbio.jp.
MATERIALS AND METHODS

Groundwater sample. The gasoline-contaminated groundwater used in this study was obtained from a BTX-contaminated subsurface aquifer situated at Kumamoto, Japan, in March 2004. This aquifer has been subjected to monitored natural attenuation from April 2002, after the termination of a 10-year pumping/purge treatment (49). The groundwater sample was obtained from a shallow dug well (well 29) and stored in sterile glass bottles (1 liter) at 4°C during transportation to our laboratory (~3 days). The headspace in the bottles was minimized to reduce contamination with air. Physical and chemical characteristics of the groundwater (sorption/reduction potential [ORP], dissolved oxygen concentration [DO], pH, and temperature) were determined as described elsewhere (49) immediately after sampling.

SIP. Groundwater samples were manipulated in an anaerobic glove box filled with reduced-copper-treated nitrogen gas. An electron acceptor (NaNO_3 or

RNA extraction, ultracentrifugation, and fractionation. Microbial cells in the groundwater sample were collected on a GV membrane (0.22-μm pore size; Millipore) by vacuum filtration. Total RNA was extracted using a FastRNA Blue kit (Qiagen) and an RNeasy mini kit (QIAGEN) as described elsewhere (37). RNA purity and quantity were determined by measuring the UV absorption spectrum at 260/280 nm (46).

13C-labeled RNA and unlabeled mini RNA were separated by equilibrium density gradient centrifugation and gradient fractionation (37). Total RNA (500 μg) was loaded onto a cesium trifluoroacetate gradient and centrifuged at 64,000 rpm for 36 h at 20°C. Gradients were fractionated from the bottom by displacement with water from the top by using a high-performance liquid chromatography pump at a flow rate of 0.2 ml min⁻¹. The buoyant densities of gradient fractions were determined by weighing specific volumes. RNAs were isolated from gradient fractions by precipitation with 1 volume of isopropanol alcohol and were checked by electrophoresis on agarose gels as described previously (37).

16S rRNA amplification and DGGE analysis. RNA samples from the equilibrium density gradient fractions were reverse transcribed using the reverse primer 518R (38) and an RNeasy mini kit (Qiagen) as described elsewhere (37). RNA purity and quantity were determined by measuring the UV absorption spectrum at 260/280 nm (46). 13C-labeled RNA and unlabeled mini RNA were separated by equilibrium density gradient centrifugation and gradient fractionation (37). Total RNA (500 μg) was loaded onto a cesium trifluoroacetate gradient and centrifuged at 64,000 rpm for 36 h at 20°C. Gradients were fractionated from the bottom by displacement with water from the top by using a high-performance liquid chromatography pump at a flow rate of 0.2 ml min⁻¹. The buoyant densities of gradient fractions were determined by weighing specific volumes. RNAs were isolated from gradient fractions by precipitation with 1 volume of isopropanol alcohol and were checked by electrophoresis on agarose gels as described previously (37).

16S rRNA amplification. Microbial DNA was extracted from the groundwater using a FastDNA Blue kit (Qiagen) and an RNeasy mini kit (QIAGEN) as described elsewhere (37). RNA purity and quantity were determined by measuring the UV absorption spectrum at 260/280 nm (46).

13C-labeled RNA and unlabeled mini RNA were separated by equilibrium density gradient centrifugation and gradient fractionation (37). Total RNA (500 μg) was loaded onto a cesium trifluoroacetate gradient and centrifuged at 64,000 rpm for 36 h at 20°C. Gradients were fractionated from the bottom by displacement with water from the top by using a high-performance liquid chromatography pump at a flow rate of 0.2 ml min⁻¹. The buoyant densities of gradient fractions were determined by weighing specific volumes. RNAs were isolated from gradient fractions by precipitation with 1 volume of isopropanol alcohol and were checked by electrophoresis on agarose gels as described previously (37).

Analysis of cDNA. Microbial 16S rRNA gene fragments were amplified by PCR, using primers 357F and 518R (38), and sequenced as described previously (26). PCR amplification and sequencing were repeated several times to check for amplification errors. The determined nucleotide sequences were aligned with the sequences of reference strains in the Rhodocyclaceae family, using Clustal W, version 1.7 (50). A phylogenetic tree was constructed from the evolutionary distance data (28) by the neighbor-joining method (45). The bootstrap resampling method of Felsenstein (18) was used with 1,000 replicates to evaluate the robustness of the branches of the inferred tree.

Biochemical analyses. Table 1. Characteristics of contaminated groundwater used in this study

| Parameter | Value
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>16</td>
</tr>
<tr>
<td>pH</td>
<td>6.8</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>62</td>
</tr>
<tr>
<td>DO (mg liter⁻¹)</td>
<td>4.3</td>
</tr>
<tr>
<td>Nitrate (mg liter⁻¹)</td>
<td>ND</td>
</tr>
<tr>
<td>Sulfate (mg liter⁻¹)</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene (mg liter⁻¹)</td>
<td>0.02</td>
</tr>
<tr>
<td>Toluene (mg liter⁻¹)</td>
<td>0.27</td>
</tr>
<tr>
<td>Xylene (mg liter⁻¹)</td>
<td>5.3</td>
</tr>
<tr>
<td>Total cell count (cells ml⁻¹)</td>
<td>5.6 × 10⁶</td>
</tr>
</tbody>
</table>

ND, not detected (the lower detection limit was 0.1 mg liter⁻¹).

Analysis of cDNA. Microbial 16S rRNA gene fragments were amplified by PCR, using primers 357F and 518R (38), and sequenced as described previously (26). PCR amplification and sequencing were repeated several times to check for amplification errors. The determined nucleotide sequences were aligned with the sequences of reference strains in the Rhodocyclaceae family, using Clustal W, version 1.7 (50). A phylogenetic tree was constructed from the evolutionary distance data (28) by the neighbor-joining method (45). The bootstrap resampling method of Felsenstein (18) was used with 1,000 replicates to evaluate the robustness of the branches of the inferred tree.

Biochemical analyses. Table 1. Characteristics of contaminated groundwater used in this study

| Parameter | Value
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>16</td>
</tr>
<tr>
<td>pH</td>
<td>6.8</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>62</td>
</tr>
<tr>
<td>DO (mg liter⁻¹)</td>
<td>4.3</td>
</tr>
<tr>
<td>Nitrate (mg liter⁻¹)</td>
<td>ND</td>
</tr>
<tr>
<td>Sulfate (mg liter⁻¹)</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene (mg liter⁻¹)</td>
<td>0.02</td>
</tr>
<tr>
<td>Toluene (mg liter⁻¹)</td>
<td>0.27</td>
</tr>
<tr>
<td>Xylene (mg liter⁻¹)</td>
<td>5.3</td>
</tr>
<tr>
<td>Total cell count (cells ml⁻¹)</td>
<td>5.6 × 10⁶</td>
</tr>
</tbody>
</table>

ND, not detected (the lower detection limit was 0.1 mg liter⁻¹).

Analysis of cDNA. Microbial 16S rRNA gene fragments were amplified by PCR, using primers 357F and 518R (38), and sequenced as described previously (26). PCR amplification and sequencing were repeated several times to check for amplification errors. The determined nucleotide sequences were aligned with the sequences of reference strains in the Rhodocyclaceae family, using Clustal W, version 1.7 (50). A phylogenetic tree was constructed from the evolutionary distance data (28) by the neighbor-joining method (45). The bootstrap resampling method of Felsenstein (18) was used with 1,000 replicates to evaluate the robustness of the branches of the inferred tree.

Biochemical analyses. Table 1. Characteristics of contaminated groundwater used in this study

| Parameter | Value
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>16</td>
</tr>
<tr>
<td>pH</td>
<td>6.8</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>62</td>
</tr>
<tr>
<td>DO (mg liter⁻¹)</td>
<td>4.3</td>
</tr>
<tr>
<td>Nitrate (mg liter⁻¹)</td>
<td>ND</td>
</tr>
<tr>
<td>Sulfate (mg liter⁻¹)</td>
<td>ND</td>
</tr>
<tr>
<td>Benzene (mg liter⁻¹)</td>
<td>0.02</td>
</tr>
<tr>
<td>Toluene (mg liter⁻¹)</td>
<td>0.27</td>
</tr>
<tr>
<td>Xylene (mg liter⁻¹)</td>
<td>5.3</td>
</tr>
<tr>
<td>Total cell count (cells ml⁻¹)</td>
<td>5.6 × 10⁶</td>
</tr>
</tbody>
</table>

ND, not detected (the lower detection limit was 0.1 mg liter⁻¹).
were 120°C and 160°C, respectively, while the column temperature was 90°C. The carrier gas was nitrogen at a flow rate of 30 ml min⁻¹.

Nucleotide sequence accession numbers. The nucleotide sequence data reported here have been submitted to the DDBJ, EMBL, and GenBank databases under accession no. AB241391 to AB241407.

RESULTS AND DISCUSSION

RNA-SIP of benzene-degrading bacteria. BTX have constantly been detected in groundwater sampled from well 29 during natural attenuation, with xylene concentrations consistently being higher than benzene and toluene concentrations (49). During this period, nitrate and sulfate concentrations in groundwater were below the detection limits (<0.1 mg liter⁻¹), and the DO concentration was always below 0.5 mg liter⁻¹ (49). The characteristics of the groundwater obtained for the present study are summarized in Table 1.

Groundwater samples were supplemented with [¹³C₆]benzene (200 μM, equivalent to approximately 16 mg liter⁻¹) and an electron acceptor (nitrate, sulfate, or oxygen). Changes in concentrations of benzene and xylene are presented in Fig. 1. Toluene concentrations are not presented in this figure, since they were very low (Table 1) and were below the detection limit from day 7 on under all conditions. Figure 1 shows that benzene was degraded under all conditions, albeit relatively slowly under denitrifying and sulfidogenic conditions. Although xylene was rapidly degraded under aerobic conditions, no significant degradation was observed under sulfidogenic conditions. In the sterile controls, benzene and xylene were not significantly decreased (data not shown).

FIG. 1. Degradation of benzene and xylene during incubation of groundwater for SIP. Closed squares, benzene under denitrifying conditions; open squares, xylene under denitrifying conditions; closed triangles, benzene under sulfidogenic conditions; open triangles, xylene under sulfidogenic conditions; closed circles, benzene under aerobic conditions; open circles, xylene under aerobic conditions. Data points are means of triplicate experiments, and error bars represent standard deviations.

FIG. 2. (A) Separation of [¹³C]‐RNA and [¹²C]‐RNA by density gradient centrifugation and fractionation. Black bars indicate estimated positions of the [¹³C]‐RNA and [¹²C]‐RNA fractions. (B) DGGE profiles of RT-PCR-amplified community rRNAs present in fractions 8 to 17 from panel A for day 0 and day 7 samples incubated under denitrifying conditions. (C) Densitometry plots with total band intensities of DGGE profile lanes in panel B.
During the 28-day incubation under denitrifying conditions, 1.8 mM of nitrate and 0.13 mM of oxygen (equivalent to 4.3 mg liter\(^{-1}\)) were consumed in association with losses of 132 \(\mu\)M of benzene, 2.9 \(\mu\)M of toluene, and 78.3 \(\mu\)M of xylene. Assuming that all oxygen molecules were used for benzene degradation, this could result in the loss of 17.3 \(\mu\)M of benzene, as estimated according to equation 1:

\[
\text{C}_6\text{H}_6 + 7.5 \text{O}_2 \rightarrow 6 \text{CO}_2 + 3 \text{H}_2\text{O} \quad (1)
\]

The remaining benzene plus toluene and xylene were likely degraded in association with denitrification. According to equations 2 to 4 (48), the degradation of these hydrocarbons could consume 1.4 mM of nitrate, which is 77.8% of the actual consumption of nitrate.

\[
\text{C}_8\text{H}_{10} + 8.4 \text{NO}_3^- + 0.4 \text{H}^+ \rightarrow 8 \text{HCO}_3^- + 4.2 \text{N}_2 + 1.2 \text{H}_2\text{O} \quad (4)
\]

The remaining nitrate may have been utilized for the oxidation of other undefined organic matters in the groundwater. This estimation indicates that a significant portion of benzene was degraded in association with denitrification.

RNAs were extracted from the incubated groundwater at 7-day intervals (from day 0 to day 21), fractionated, and subjected to reverse transcription-PCR (RT-PCR) of 16S rRNA fragments (Fig. 2). Figure 2A confirms that the formation and fractionation of density gradients were successful. Based on known density values (37), we estimated that the \(^{13}\text{C}\)-RNA and \(^{12}\text{C}\)-RNA fractions were positioned around fractions 10 and 16, respectively. Figure 2B presents DGGE patterns of RT-PCR products from different fractions for denitrifying incubation on days 0 and 7. As shown in this figure, bacterial species that utilized \(^{13}\text{C}_6\) benzene were also detected in the \(^{12}\text{C}\)-RNA fraction, because the groundwater was originally contaminated with benzene. Total DGGE band intensities of these DGGE profiles were plotted in Fig. 2C. It is shown that only one peak was seen around the \(^{13}\text{C}\)-RNA fractions on day 0, while two peaks appeared around the \(^{12}\text{C}\)-RNA and \(^{13}\text{C}\)-RNA fractions on day 7. This observation indicates that \(^{13}\text{C}\) in benzene was incorporated into rRNA during the 7-day incubation under denitrifying conditions. Similarly, \(^{13}\text{C}\) incorporation within 7 days was also observed under aerobic and sulfidogenic conditions (data not shown).

Figure 3 shows changes in DGGE patterns of the \(^{13}\text{C}\)-RNA fractions (corresponding to fraction 10 in Fig. 2) during 21-day incubations. DGGE analysis was not conducted for aerobic incubation on day 21, since all benzene disappeared by day 14. It was found that several bands, such as bands 2 and 3, commonly appeared under different conditions, while some bands were specific, e.g., band 4 was seen under denitrifying conditions and bands 11 and 12 were seen under sulfidogenic conditions. In addition, many unique bands appeared under aerobic conditions. It is likely that the common bands (bands 2 and 3) represented organisms that utilized oxygen molecules

Table 2. Sequence analysis of major DGGE bands appearing in \(^{13}\text{C}\) fractions (Fig. 3)

<table>
<thead>
<tr>
<th>DGGE band</th>
<th>Organism with closest sequence (accession no.)</th>
<th>Homology (%)</th>
<th>Phylogenetic group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dechloromonas sp. strain JJ (AY032611)</td>
<td>96</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>2</td>
<td>Aquaspirillum sp. strain 412 (AY788907)</td>
<td>95</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>3</td>
<td>Comamonas aquatica (AJ430346)</td>
<td>95</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>4</td>
<td>Azotobacter vinelandii (X77679)</td>
<td>100</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>5</td>
<td>Zoogloea resiniphila (AJ505854)</td>
<td>99</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>6</td>
<td>Hylemonella sp. strain WQH1 (AJ565430)</td>
<td>97</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>7</td>
<td>Novosphingobium hauatactum (AJ416411)</td>
<td>100</td>
<td>Alphaproteobacteria</td>
</tr>
<tr>
<td>8</td>
<td>Aquaspirillum delicatun (AF078756)</td>
<td>98</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>9</td>
<td>Zoogloea resiniphila (A011506)</td>
<td>98</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>10</td>
<td>Xanthobacter autrophicus (U62888)</td>
<td>100</td>
<td>Alphaproteobacteria</td>
</tr>
<tr>
<td>11</td>
<td>Aquaspirillum sp. strain 412 (AY788907)</td>
<td>95</td>
<td>Betaproteobacteria</td>
</tr>
<tr>
<td>12</td>
<td>Uncultured bacterium vadinHB76 (AJ583208)</td>
<td>92</td>
<td>Bacteria</td>
</tr>
</tbody>
</table>
TABLE 3. Degradative capacities of *Azoarcus* strains isolated from groundwater

<table>
<thead>
<tr>
<th>Strain</th>
<th>Cold test result*</th>
<th>MRb (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN11</td>
<td>++ + + + +</td>
<td>102 ± 19</td>
</tr>
<tr>
<td>DN15</td>
<td>+ + + + +</td>
<td>NA</td>
</tr>
<tr>
<td>DN47</td>
<td>+ + + + +</td>
<td>NA</td>
</tr>
<tr>
<td>AN9</td>
<td>++ + + + +</td>
<td>72 ± 14</td>
</tr>
<tr>
<td>AN21</td>
<td>-- ++ + + +</td>
<td>3.7 ± 4.4</td>
</tr>
</tbody>
</table>

a No substantial degradation was observed after 30 days; ++, 20% to 90% of the amended substrate was degraded; ++, >90% of the substrate was degraded.

MR of benzene, determined by a radiorespirometry experiment as described in the text. Data are means ± standard deviations (n = 3). NA, not analyzed.

(variably contaminated during sampling) to assimilate benzene. In contrast, comparisons of bands occurring under the different electron-accepting conditions allowed us to identify phylotypes that specifically assimilated benzene under certain electron-accepting conditions, such as band 4, representing organisms assimilating benzene under denitrifying conditions.

The nucleotide sequences of major bands were determined (Table 2), and band 4 was assigned to *Azoarcus*, a genus known to include bacteria capable of metabolizing aromatic hydrocarbons, such as toluene, xylene, and ethylbenzene, under denitrifying conditions (8, 19, 22, 47, 48, 58). Recently, Ulrich and Edwards demonstrated that the dominant microbial population in a benzene-degrading denitrifying enrichment culture was closely related to *Azoarcus* species (52). In our previous study (49), an *Azoarcus* phylotype was widely detected by the PCR-DGGE analysis of groundwater taken from a gasoline-contaminated aquifer. In this study, we found that the nucleotide sequence of band 4 (Fig. 3) was 100% identical to that of the *Azoarcus* phylotype retrieved from the gasoline-contaminated aquifer, suggesting that the *Azoarcus* population represented by band 4 was at least partly responsible for mineralization of benzene in the gasoline-contaminated groundwater.

Isolation of *Azoarcus* strains and phylogenetic analysis. In order to examine if bacteria represented by the *Azoarcus* phylotype were actually capable of degrading benzene under denitrifying conditions, we attempted to isolate them for axenic benzene degradation tests. The groundwater incubated for SIP under denitrifying conditions for 28 days was spread onto dCGY plates and incubated under aerobic and denitrifying conditions. We used dCGY medium because a previous study demonstrated that this medium facilitated the isolation of bacteria affiliated with the *Betaproteobacteria* from activated sludge (54). A total of 60 colonies (40 from aerobic and 20 from denitrifying plates) were picked and restreaked on the same medium for purification, and cells on the new plates were subjected to DGGE analysis of PCR-amplified 16S rRNA gene fragments. In the DGGE analysis, band positions were compared with that of band 4 in Fig. 3 on the same gels, and nucleotide sequences of bands migrating to the same position as band 4 were determined to confirm their identity. As a result, we obtained five colonies whose 16S rRNA gene fragments were 100% identical in nucleotide sequence to that in band 4; these were strains DN11, DN15, and DN47, isolated under denitrifying conditions, and strains AN9 and AN21, isolated under aerobic conditions. All of them were capable of aerobic growth in dCGY medium and were therefore maintained under aerobic conditions.

Sequence analysis of the 16S rRNA gene fragments (>1,450 bp) found that their sequences included several mismatches (i.e., they had >99% sequence identity to each other), except for AN9 and AN21, whose 16S rRNA gene sequences were completely identical. Phylogenetic comparison of the 16S rRNA gene sequences with those of reference *Azoarcus* strains showed that these isolates were affiliated with the genus *Azoarcus* and were particularly related to *Azoarcus evansi* (99% sequence identity over 1,480 bp), which metabolizes such aromatic compounds as benzoate, toluene, and phenol under denitrifying conditions (4), and *Azoarcus* sp. strain ToN1 (99% sequence identity over 1,470 bp), which degrades toluene (42).

Anaerobic benzene degradation in axenic cultures. The five isolated strains were examined for the ability to degrade BTX under denitrifying conditions (Table 3). We found that four strains, but not strain AN21, degraded toluene and m-xylene, while only two strains (DN11 and AN9) were capable of anaerobic benzene degradation. This observation revealed the variation in degradative capacity among these closely related strains and phylogenetic analysis.

FIG. 4. Growth and benzene degradation by strains DN11 (A) and AN9 (B). The cultures were refed benzene at the time point indicated with vertical lines. Residual benzene was measured in the nitrate-amended (closed squares), unamended (open squares), and uninoculated (open triangles) cultures. Cell numbers are given for the nitrate-amended (closed circles) and unamended (open circles) cultures. Data points are means of triplicate experiments, and error bars represent standard deviations.
Azoarcus strains. In particular, although the 16S rRNA gene sequences of strains AN9 and AN21 were 100% identical, their degradative capacities were very different. From these data and the 16S rRNA gene sequences, we tentatively identified that the five isolates are five different strains.

Figure 4 presents growth curves for strains DN11 and AN9 grown in basal salt medium supplemented with 15 μM benzene as the sole carbon source. It is shown that benzene was degraded, concomitant with growth, when the culture was supplemented with nitrate. Although small amounts of growth were observed in the absence of nitrate, they were not associated with benzene degradation and were probably due to nutrient carryover from the preculture. After the degradation test, the purity of the culture was confirmed by PCR-DGGE analysis (data not shown).

In order to investigate if benzene was anaerobically mineralized (converted to CO2) by strains DN11 and AN9, radiorespirometry experiments were conducted, using 14C-benzene covered in the CO2 trap. In this experiment, significant amounts of radioactivity were not recovered in the CO2 trap in the absence of nitrate, they were not associated with benzene degradation, and were probably due to nutrient carryover from the preculture. After the degradation test, the purity of the culture was confirmed by PCR-DGGE analysis (data not shown).

In conclusion, the present study successfully used the RNA-SIP technique to demonstrate that the Azoarcus population is involved in benzene degradation in the aquifer. However, among the five isolated strains affiliated with the Azoarcus phylotype, only two strains were capable of anaerobic benzene degradation. These data indicate that functional heterogeneity exists among strains with the Azoarcus phylotype, and more specific molecular markers than the 16S rRNA gene will be necessary for discriminating benzene-degrading Azoarcus populations from other closely related Azoarcus populations in the gasoline-contaminated aquifer.

Although several studies have obtained enrichment cultures degrading benzene under anaerobic conditions (10, 20, 22, 35, 42, 49, 51, 52), no study has succeeded in isolating benzene-degrading strains from them. We have also attempted to isolate anaerobic benzene-degrading bacteria by using agar plates containing minimal medium after enrichment in liquid cultures from gasoline-contaminated groundwater; however, all these trials were in vain. In contrast, the present study combined RNA-SIP with DGGE screening of heterotrophic bacteria, resulting in the isolation of two denitrifying benzene-degrading bacteria. Accordingly, we suggest that RNA-SIP identification coupled to phylogenetic screening of nonselective isolates facilitates the isolation of enrichment/isolation-resistant microorganisms with a specific function.

ACKNOWLEDGMENTS

This work was supported by the New Energy and Industrial Technology Development Organization (NEDO).

REFERENCES
