New Insights into the Ligninolytic Capability of a Wood Decay Ascomycete

Semarjit Shary,1 Sally A. Ralph,2 and Kenneth E. Hammel1,2*

Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706,1 and
USDA Forest Products Laboratory, Madison, Wisconsin 537262

Received 19 June 2007/Accepted 18 August 2007

Wood-grown cultures of Daldinia concentrica oxidized a permethylated β-14C-labeled synthetic lignin to 14CO2 and also cleaved a permethylated α-13C-labeled synthetic lignin to give Cα-Cβ cleavage products that were detected by 13C nuclear magnetic resonance spectrometry. Therefore, this ascomycete resembles white-rot basidiomycetes in attacking the recalcitrant nonphenolic structures that predominate in lignin.

The degradation of lignocellulose by ascomycetes, a process generally called soft rot, is an important route for carbon cycling in plant litter and soils (2). Little is known about the decay mechanisms of these fungi, in contrast to those of the better-studied lignocellulolytic basidiomycetes that degrade wood. Nevertheless, it is clear that some soft-rot fungi can degrade lignin, because they erode the secondary cell wall and decrease the content of acid-insoluble material (Klason lignin) in angiosperm wood (13, 21). Some ascomycetes have also been shown to mineralize radiolabeled synthetic lignins (known as dehydrogenative polymerizes [DHPs]), but the low extents of 14CO2 production reported— invariably less than 10% of the lignin—indicate that the ligninolytic capabilities of ascomycetes are more limited than those of white-rot basidiomycetes (11, 17).

One possibility is that ascomycetes attack only the phenolic units in lignin, which comprise roughly 10% of the polymer and are chemically more labile than the ether-linked, nonphenolic units that make up the remainder (Fig. 1). Phenolic lignin structures are oxidized and directly cleaved by a variety of mild biological oxidants such as manganic chelates and phenol oxidases (7, 20). By contrast, the cleavage of nonphenolic lignin structures requires the action of stronger oxidants, including oxyradicals produced by the action of peroxidases or laccases on various redox mediators. The production of these more vigorous ligninolytic systems is typical of white-rot basidiomycetes (5, 12) and has not yet been convincingly shown in soft-rot ascomycetes. However, the production of phenol oxidases that could act directly on phenolic lignin is widespread among ascomycetes (11, 14, 19).

Mineralization of DHPs. To address this question, we compared the extents to which Daldinia concentrica mineralized phenolic and nonphenolic DHPs. D. concentrica is a xylariaceous ascomycete that produces phenol oxidase activity (14) and degrades angiosperm wood extensively (13). Because chemical analyses of wood degraded by this fungus have shown that it degrades syringyl lignin units faster than guaiacyl ones (Fig. 1) (13), we performed these experiments with a syringyl/ guaiacyl DHP (i.e., a polymeric model of angiosperm lignin) that was 14C labeled at Cβ on the side chains of its syringyl units. The radiolabeled DHP, prepared as described earlier (4, 9), had a specific activity of 0.01 mCi/mmol of syringyl subunits and a syringyl/guaiacyl ratio of approximately 4:1. A portion of this phenolic syringyl/guaiacyl DHP was then permethylated with diazomethane as described earlier (8) to obtain a non-phenolic syringyl/guaiacyl DHP, i.e., a polymer in which all of the phenolic hydroxyl groups had been blocked as methyl ethers. In addition, a phenolic guaiacyl DHP (i.e., a polymeric model of gymnosperm lignin), prepared previously with 14C at Cβ of its side chains (0.01 mCi/mmol of guaiacyl subunits) (4), was included in the experiment for comparison.

Each DHP was fractionated by gel permeation chromatography (GPC) on Sephadex LH-20 in N,N-dimethylformamide, and the excluded fractions were taken to eliminate low-molecular-mass material (≤1 kDa) that might have been susceptible to uptake and intracellular metabolism. This step is essential in microbiological experiments with DHPs because ligninolysis is strictly an extracellular process (9). The excluded fractions were then subjected again to GPC on a 1.8- by 33-cm column of Sephacryl S-100 in N,N-dimethylformamide (15),

![FIG. 1. Principal structures of natural lignins and DHPs. (A) Aryl-glycerol-β-aryl ether structures. (B) Phenylcoumaran structures. (C) Resinol structures. R1 is H for guaiacyl structures and OCH3 for syringyl structures. R2 is H for phenolic structures, CH3 for permethylated phenolic structures, and lignin for nonphenolic structures.](http://aem.asm.org/fig/1.png)
and fractions eluting within the sieving range of the column were pooled so that the phenolic and nonphenolic DHPs had similar molecular mass distributions. We included this extra purification step in case the size of a DHP might influence its bioavailability. Figure 2 shows the molecular mass distributions of the three purified DHPs as determined by analytical GPC.
mixture (Cellulysin; Calbiochem, San Diego, CA) for 48 h thrice as described elsewhere (16), after which the lignin-enriched fraction was extracted for 24 h thrice with dioxane-water (9:1) to solubilize as much lignin as possible. The two wafers originally supplemented with [α-13C]DHP yielded 97 mg of solubles, whereas the two unsupplemented wafers yielded 82 mg.

Qualitative 13C NMR analyses of these samples were obtained, and the normalized spectra (Fig. 3) were inspected for signals indicative of ligninolysis. No significant changes were discernible in the alcohol and ether range (70 to 90 ppm), corresponding to C_6 in major structures (Fig. 1) of the undegraded DHP, but new structures were apparent in the carbonyl (190 to 205 ppm and 165 to 175 ppm) regions. Figure 3a shows the spectrum in these regions for the [α-13C]DHP that was extracted from degraded wood, and Fig. 3b shows the spectrum in the same regions for the extract from degraded wood that had received no [α-13C]DHP. Figure 3c shows the difference between these two spectra and is thus a spectrum of degraded [α-13C]DHP that has been corrected for the small contribution made by material originating from the wood. To see the changes that D. concentrica caused in the nonphenolic [α-13C]DHP, the difference spectrum in Fig. 3c should be compared with Fig. 3d, which shows the spectrum of the original, undegraded, permethylated polymer.

In [α-13C]DHP recovered from degraded wood, a signal in the region characteristic of benzaldehyde carbonyls was apparent (Fig. 3a and 3c, signal 1) and was confirmed to be from a protonated (i.e., aldehyde as opposed to ketone) carbonyl in a distortionless enhancement with polarization transfer (DEPT) experiment (18) (Fig. 3e). This benzaldehyde signal was absent from the lignin extracted from degraded wood that had received no [α-13C]DHP (Fig. 3b) and therefore must have originated from the DHP. Benzaldehyde residues were also present in the original, undegraded [α-13C]DHP (Fig. 3d), as also found in earlier research on another DHP (3), but they occurred at a much higher level in the degraded sample.

Similarly, the [α-13C]DHP from degraded wood exhibited benzoic acid carbonyl signals (Fig. 3a and c, signal 2) that were detectable neither in the lignin from wood without [α-13C]DHP (Fig. 3b) nor in the original undegraded [α-13C]DHP (Fig. 3d). The undegraded [α-13C]DHP did originally contain benzoic acid residues, in agreement with earlier work (3), but they all appear in our spectra as methyl benzoates (Fig. 3d, signal 3) because the [α-13C]DHP had been permethylated before the experiment. Since these preexisting methyl benzoates were unaffected by fungal decay (Fig. 3a and c) they cannot have been the source of the new benzoic acid residues.

There are two possible sources for new benzaldehydes and benzoic acids in a biodegraded lignin. First, if the polymer originally contained primary benzyl alcohols, these might simply become oxidized at C_6. Such reactions would not be ligninolytic, but we can rule them out as an explanation for our data because a two-dimensional 1H-13C heteronuclear spin quantum correlation (HSQC) NMR spectrum of the original permethylated [α-13C]DHP showed that it lacked the 1H_δ_α, 13C_ δ cross-peak at a δ of 4.6, 65 ppm, that is expected for primary benzyl alcohols (data not shown; for typical NMR chemical shifts of lignin-related structures see the U.S. Dairy Forage Research Center NMR Database of Lignin and Cell Wall Model Compounds at http://ars.usda

FIG. 3. 13C NMR results showing (a) a spectrum of the extract from wood decayed by D. concentrica in the presence of permethylated guaiacyl [α-13C]DHP, (b) a spectrum of the extract from decayed wood that received no DHP, (c) the difference between spectra a and b, (d) a spectrum of undegraded, permethylated, guaiacyl [α-13C]DHP, and (e) a DEPT spectrum of the extract from wood decayed in the presence of permethylated guaiacyl [α-13C]DHP. Spectra a and b were normalized with respect to the amount of wood lignin present by equalizing the signal from C-2/C-6 in syringyl aromatic carbons (guaiacyl DHP does not contribute in this region). Spectra a and d were normalized with respect to the amount of DHP present by equalizing the signal from C_6 in resinol structures (this carbon was present at a very low abundance in the wood lignin). The samples were dissolved in 400 μl of acetone-d_6—D_2O (4:1), and the spectra were obtained with a Bruker DPX 250-MHz spectrometer (62.9 MHz for 13C). The qualitative experiments shown in spectra a to d were acquired with a standard power-gated sequence, a 0.5-s delay, and 150,000 scans. Quantitative experiments (not shown) were performed with an inverse-gated sequence, a 15-s delay, a 90° pulse, and 25,000 scans. For spectrum c, the standard Bruker DEPT135 sequence was run for 30,000 scans. In all cases, the acetone signal at 29.8 ppm was used as the internal reference. Structures corresponding to signal assignments 1 to 3 are shown below the spectra. The assignments were confirmed by measuring carbonyl chemical shifts (δ) for 3,4-dimethoxybenzaldehyde, 3,4-dimethoxybenzoic acid, and 3,4-dimethoxybenzoate methyl ester. The new signals at 172 to 174 ppm in spectrum c may represent aliphatic carboxyl groups resulting from C_6-ary1 cleavage of the DHP (1).
the recalcitrant nonphenolic structures in lignin and that polymerize during one-electron oxidation (4). The relatively low ability of ascomycetes to depolymerize guaiacyl lignin structures has been found to elicit their production on any medium except wood. However, it is reasonable to predict that they resemble some of the extracellular one-electron oxidants produced by white-rot basidiomycetes, because the latter fungi and their isolated lignonlytic systems also cleave nonphenolic lignin structures between Cα and Cβ (1, 4). The relatively low activity of ascomycetes to depolymerize guaiacyl lignin structures has led researchers to suggest that they produce weaker lignonlytic oxidants (13), but this inference is contradicted by the observation that guaiacyl lignin structures are actually slightly easier to oxidize than syringyl structures (6). We consider it more likely that the ascomycetes produce a relatively small quantity of lignonlytic oxidants and consequently fail to overcome the tendency that guaiacyl lignin fragments have to repolymerize during one-electron oxidation (4).

Conclusion. Our results show that D. concentrica degrades the recalcitrant nonphenolic structures in lignin and that Cα-Cβ cleavage of the lignin propyl side chain is one of the processes responsible. The lignonlytic agents that D. concentrica produces remain unidentified because no method has yet been found to elicet their production on any medium except wood. However, it is reasonable to predict that they resemble some of the extracellular one-electron oxidants produced by white-rot basidiomycetes, because the latter fungi and their isolated lignonlytic systems also cleave nonphenolic lignin structures between Cα and Cβ (1, 4). The relatively low activity of ascomycetes to depolymerize guaiacyl lignin structures has led researchers to suggest that they produce weaker lignonlytic oxidants (13), but this inference is contradicted by the observation that guaiacyl lignin structures are actually slightly easier to oxidize than syringyl structures (6). We consider it more likely that the ascomycetes produce a relatively small quantity of lignonlytic oxidants and consequently fail to overcome the tendency that guaiacyl lignin fragments have to repolymerize during one-electron oxidation (4).

We thank Carl Houtman for calculating the DHP molecular mass distributions, Hoon Kim for milling the wood samples, and John Ralph for advice on sample preparation for NMR analysis. This study was supported by U.S. Department of Energy grants DE-FG02-94ER20140 and DE-AI02-07ER64480 to K.E.H.

REFERENCES