Loss of Gibberellin Production in *Fusarium verticillioides* (Gibberella fujikuroi MP-A) Is Due to a Deletion in the Gibberellic Acid Gene Cluster

Christiane Böhmke,1 Maria C. Rojas,2 Peter Hedden,3 and Bettina Tudzynski1*
Westfälische Wilhelms-Universität Münster, Institut für Botanik, Schlossgarten 3, 48149 Münster, Germany; Laboratorio de Bioorgánica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile; and Rothamsted Research, Harpenden, Hertfordshire AL5 2QJ, United Kingdom

Received 6 August 2008/Accepted 20 October 2008

Fusarium verticillioides (Gibberella fujikuroi mating population A [MP-A]) is a widespread pathogen on maize and is well known for producing fumonisins, mycotoxins that cause severe disease in animals and humans. The species is a member of the *Gibberella fujikuroi* species complex, which consists of at least 11 different biological species, termed MP-A to -K. All members of this species complex are known to produce a variety of secondary metabolites. The production of gibberellins (GAs), a group of diterpenoid plant hormones, is mainly restricted to *Fusarium fujikuroi* (G. fujikuroi MP-C) and *Fusarium konzum* (MP-I), although most members of the *G. fujikuroi* species complex contain the GA biosynthesis gene cluster or parts of it. In this work, we show that the inability to produce GAs in *F. verticillioides* (MP-A) is due to the loss of a majority of the GA gene cluster as found in *F. fujikuroi*. The remaining part of the cluster consists of the full-length *F. verticillioides* des gene (*Fvdes*), encoding the GA₄ desaturase, and the coding region of *FvP450-4*, encoding the ent-kaurene oxidase. Both genes share a high degree of sequence identity with the corresponding genes of *F. fujikuroi*. The GA production capacity of *F. verticillioides* was restored by transforming a cosmid with the entire GA gene cluster from *F. fujikuroi*, indicating the existence of an active regulation system in *F. verticillioides*. Furthermore, the GA₄ desaturase gene was cloned from *F. verticillioides* and encodes an active enzyme which was able to restore the GA production in a corresponding deletion mutant of *F. fujikuroi*.

Fusarium verticillioides (Sacc.) Nirenberg (synonym *Fusarium moniliforme*; teleomorph *Gibberella fujikuroi* MP-A or *Gibberella moniliformis*) is a widespread pathogen of maize plants causing ear and stalk rot disease (4, 10) and belongs to the *Gibberella fujikuroi* (Sawada) species complex. This complex includes important fungal pathogens of a variety of crops, such as maize, rice, barley, sugarcane, pine, mango, pineapple, and sorghum (26). It comprises 11 sexually fertile biological species, also known as mating populations (MPs; MP-A to -K), and more than 30 anamorphic species (genus *Fusarium*, sections *Liseola*, *Elegans*, and *Dlaminia*) (21, 24, 44, 45, 65). Members of the species complex produce a broad variety of mycotoxins and other secondary metabolites, such as moniliformin (25), fusaric acid (1), beauvericin (30), gibberellins (GAs) (58), bikaverin (29), and fumonisins (3, 4, 39, 43).

It is noteworthy that some secondary metabolites are produced by more than one species in the complex, whereas other metabolites are produced only by one species. Thus, fumonisins are produced by *F. proliferatum* and *F. fujikuroi*, as well as by *F. verticillioides* (12, 37, 49, 51), moniliformin by *F. verticillioides*, *F. fujikuroi* and *F. thapsinum* (25, 38), and beauvericin by isolates of *F. fujikuroi*, *F. proliferatum*, and *F. subglutinans* (12, 55). In contrast, the production of GAs, a group of plant hormones, is so far mainly restricted to *F. fujikuroi* (MP-C) and *F. konzum* (MP-I), although several species of the *G. fujikuroi* species complex contain the entire GA-biosynthetic gene cluster (32, 33, 34).

The genetics and biochemistry of GA production in the rice pathogen *F. fujikuroi* have been well characterized in recent years (53, 61, 62, 63). The GA biosynthesis genes in *F. fujikuroi* are organized in a gene cluster (28, 58), as is often the case for secondary-metabolite biosynthesis pathways in fungi, e.g., the genes for the biosynthesis of fumonisins in *F. verticillioides* (48), aurofusarin in *Fusarium graminearum* (35), and aflatoxin and sterigmatocystin in *Aspergillus* species (20).

Beside genes encoding a pathway-specific geranylgeranyl diphasphate synthase (*ggs2*) and the bifunctional *ent-copalyl diphasphate/ent-kaurene synthase* (*cps/ks*), the GA gene cluster includes four cytochrome P450 monoxygenase genes (*P450-1* to *P450-4*) and the GA₄ desaturase gene (*des*) (53, 58, 61, 62, 63). Thirteen enzymatic steps are involved in the biosynthesis of gibberellic acid (*GA₄*), from geranylgeran diphasphate, indicating that most of the cluster genes encode multifunctional enzymes (Fig. 1). Recently, we demonstrated that the expression of six of the seven genes is under positive control by the general transcription factor AreA (40, 60) and that high nitrogen levels, which suppress AreA activity, virtually eliminate the expression of these genes and GA production. We have also characterized the cytochrome P450 oxidoreductase gene, *cpr*, and showed that CPR is essential for the functionality of the GA-specific cytochrome P450 monoxygenases in this fungus (31).

Here we show that the genome of *F. verticillioides* contains a rudimentary GA gene cluster due to the complete absence of five of the seven biosynthetic genes. We found that the only complete remaining gene, *Fvdes* (*F. verticillioides* des), encoding the GA₄ desaturase, is active and is able to complement the
block in GA₃ biosynthesis in the *F. fujikuroi des* deletion (FfΔdes) mutant. Furthermore, we show that *F. verticillioides* produces a full spectrum of GAs after transformation with the entire GA gene cluster from *F. fujikuroi*, indicating an active regulation system in *F. verticillioides*.

MATERIALS AND METHODS

Fungal strains. *Fusarium fujikuroi* (MP-C) strains IMI58289 (Commonwealth Mycological Institute, Kew, United Kingdom) and m567 (Fungal Culture Collection, Weimar, Germany) are GA-producing wild-type strains. *F. verticillioides* (MP-A) strains A00149 (FGSC7415), A00999 (FGSC7603), A02949, A03823 (FRC M1212), A03824 (JFK), A04362 (NRRL22052), A04367 (JFL), A04796 (JFL), and A04801 (MRC4315) are isolates from maize kernels at different geographic locations and were kindly provided by J. F. Leslie (Kansas State University, KA). Strain FfΔorf3-T33 (FfΔdes) is a des deletion mutant of *F. fujikuroi* strain IMI58289, lacking GA₃ and GA₇ production (63). The GA-deficient strain SG139 is a UV-induced *F. fujikuroi* mutant that lacks the whole GA gene cluster (14, 61). It was kindly provided by E. Cerdá-Olmedo and J. Avalos (University of Seville, Seville, Spain). Mutant B1-41a, obtained by UV irradiation of *F. fujikuroi* strain GF-1a (2), was donated by J. MacMillan (University of Bristol, Bristol, United Kingdom). This strain was shown to contain a point mutation in the *P450-4* locus and is GA deficient.

FIG. 1. GA-biosynthetic pathway in *F. fujikuroi*. The major pathway is indicated by bold arrows.
Bacterial strains and plasmids. *Escherichia coli* strain Top10F (Invitrogen, Groningen, The Netherlands) was used for plasmid propagation. Vectors pUCBM20 (Boehringer, Mannheim, Germany) and pUC19 (Fermentas, St. Leon-Rot, Germany) were used to clone DNA fragments carrying the *Fusarium* cluster genes and gene fragments from *F. fujikuroi* and *F. verticillioides*. Cosmid pc101, derived from a cosmid library based on strain m567, contains the entire GA cluster, including the noncoding 5' and 3' regions (about 40 kb) and, additionally, the hygromycin resistance cassette for selection (P. Linne, Mannheim, and B. Tuzdymki, unpublished data). Plasmid pDexA was constructed by PCR using primer pair des-Prom and P450-4-GD1 and contains the full-length *Fusarium* gene from strain A00149, encoding the GA4 desaturase, and the rudimentary P450-4 gene, encoding *ept*-kaurenoic oxidase. For functional studies with *Pv*P450-4, vectors pPFv-P450-4 (genomic gene copy with natural promoter region) and pPFvP450-4 (genomic gene copy under the control of the *F. fujikuroi* P450-4 promoter) were generated. To obtain expression vector pPFvP454, the genomic copy of *Pv*P450-4 with the putative promoter was amplified by using primer pair Fv-P450-4-Prom-R2 and Fv-P450-4-F1 and cloned into pCR2.1 TOPO. For expression of the FvP450-4 gene under the control of the corresponding *F. fujikuroi* promoter, the gene was amplified with an introduced Ncol site at the translation start codon (primer combination Fv-P450-4-Prom-Ncol-R1 and Fv-P450-4-F1), cloned into pCR2.1 TOPO, excised with EcoRI, and ligated into pUC19. The *F. fujikuroi* promoter was generated by PCR using primers Fv-P450-4-1-Prom-Ncol-F1 and Fv-P450-4-1-Prom-Ncol-R1, introducing Ncol sites at the 5' and 3' ends. It was ligated into the Ncol-digested pUC19 containing P450-4, generating plasmid pPFP454:FvP45. In cotransformation experiments, pNR1 (nourseothricin resistance) (23, 31) or pAN7-1 (hygromycin resistance) (50), respectively, were used for selection of transformants.

Media and growth conditions. For DNA isolation, *Fusarium* strains were grown for 3 days at 28°C on cellophane sheets (Alba Gewürze, Bielefeld, Germany) placed on CM agar (46). The harvested mycelium was frozen in liquid nitrogen, lyophilized for 24 h, and ground to a fine powder with a mortar and pestle. *F. verticillioides* strains were cultivated on V8 juice agar (200 mL/100 mL V8 juice, 0.3% CaCO₃, and 2% agar) for sporulation. For RNA isolation, fungal strains were grown in 100% or 100% ICI medium, containing 8% glucose, 0.5% MgSO₄, 0.1% KH₂PO₄, and 0.5, 0.1, or 0% NH₄NO₃, respectively.

For analysis of gene expression, *Fusarium* strains were cultivated for 7 to 10 days in 20% ICI medium on a rotary shaker at 28°C. To elucidate nitrogen regulation, strains were harvested after 4 days of cultivation in 10% ICI medium, the mycelium was washed, and 1.5-g (wet weight) amounts were transferred to 100 ml of 0% or 100% ICI medium for 3 h. For GA production, the strains were grown for 10 days on a rotary shaker (190 rpm) at 28°C in 300 mL Erlenmeyer flasks containing 100 ml of 20% ICI medium.

DNA and RNA isolation. Genomic DNA was isolated from lyophilized mycelium as described by Doyle and Doyle (13). Plasmid DNA was extracted by using Qiagen columns following the manufacturer's protocol (Qiagen, Hilden, Germany). RNA was isolated by using an RNAgent total RNA isolation kit (Promega, Mannheim, Germany) as described by Doyle and Doyle (13). Plasmid DNA was extracted by using Qiagen columns following the manufacturer's protocol (Qiagen, Hilden, Germany).

DNA sequencing. After digestion with restriction endonucleases and electrophoresis, genomic DNA was transferred onto Hybond N filters (Amersham Pharmacia, Freiburg, Germany). 32P-labeled probes were synthesized by Amersham Pharmacia and hybridized at 65°C in 5X Denhardt's solution containing 5% dextran sulfate (36). Filters were washed at the same temperature used for hybridization in 1X SSPE (1X SSPE is 0.18 M NaCl, 10 mM NaH₂PO₄, and 1 mM EDTA [pH 7.7]), 0.1% sodium dodecyl sulfate.

Northern blot hybridizations were accomplished by the method of Church and Gilbert (8). The *F. fujikuroi* rRNA gene was used as a control hybridization probe to confirm RNA transfer.

Sequencing. cDNA sequencing of recombinant plasmid clones was accomplished with the automatic sequencer Li-COR 4200 (MWG, Munich, Germany). The two strands of overlapping subclones obtained from the genomic DNA clones were sequenced by using the universal and the reverse primers. DNA and protein sequences were aligned by using DNAStar (Madison, WI).

Transformation of Fusarium strains. The preparation of protoplasts and the transformation procedure were carried out as previously described (59), with the following modifications for strain A00149: strain A00149 was preincubated for 7 to 10 days on V8 agar. About 5 x 10⁴ spores were inoculated into 100 ml CM medium. For complementation experiments, 10⁸ protoplasts (in 50 µl) of strain A00149, Fv-des-Prom-T33 (Fv), SG139, or B1-41a were transformed with up to 15 µg of the cosmid pc101, carrying the entire GA gene cluster from *F. fujikuroi*, or one of the circular complementation vectors pDexA, pPFv-P454, and pPFP454:FvP4. Plasmids were cotransformed with pNR1 (nourseothricin resistance marker) (31) or pAN7-1 (hygromycin resistance) (50).

Transformation of Fusarium strains. The preparation of protoplasts and the transformation procedure were carried out as previously described (59), with the following modifications for strain A00149: strain A00149 was preincubated for 7 to 10 days on V8 agar. About 5 x 10⁴ spores were inoculated into 100 ml CM medium. For complementation experiments, 10⁸ protoplasts (in 50 µl) of strain A00149, Fv-des-Prom-T33 (Fv), SG139, or B1-41a were transformed with up to 15 µg of the cosmid pc101, carrying the entire GA gene cluster from *F. fujikuroi*, or one of the circular complementation vectors pDexA, pPFv-P454, and pPFP454:FvP4. Plasmids were cotransformed with pNR1 (nourseothricin resistance marker) (31) or pAN7-1 (hygromycin resistance) (50).

Sequencing. cDNA sequencing of recombinant plasmid clones was accomplished with the automatic sequencer Li-COR 4200 (MWG, Munich, Germany). The two strands of overlapping subclones obtained from the genomic DNA clones were sequenced by using the universal and the reverse primers. DNA and protein sequences were aligned by using DNAStar (Madison, WI).

Transformation of Fusarium strains. The preparation of protoplasts and the transformation procedure were carried out as previously described (59), with the following modifications for strain A00149: strain A00149 was preincubated for 7 to 10 days on V8 agar. About 5 x 10⁴ spores were inoculated into 100 ml CM medium. For complementation experiments, 10⁸ protoplasts (in 50 µl) of strain A00149, Fv-des-Prom-T33 (Fv), SG139, or B1-41a were transformed with up to 15 µg of the cosmid pc101, carrying the entire GA gene cluster from *F. fujikuroi*, or one of the circular complementation vectors pDexA, pPFv-P454, and pPFP454:FvP4. Plasmids were cotransformed with pNR1 (nourseothricin resistance marker) (31) or pAN7-1 (hygromycin resistance) (50).

Sequencing. cDNA sequencing of recombinant plasmid clones was accomplished with the automatic sequencer Li-COR 4200 (MWG, Munich, Germany). The two strands of overlapping subclones obtained from the genomic DNA clones were sequenced by using the universal and the reverse primers. DNA and protein sequences were aligned by using DNAStar (Madison, WI).

Transformation of Fusarium strains. The preparation of protoplasts and the transformation procedure were carried out as previously described (59), with the following modifications for strain A00149: strain A00149 was preincubated for 7 to 10 days on V8 agar. About 5 x 10⁴ spores were inoculated into 100 ml CM medium. For complementation experiments, 10⁸ protoplasts (in 50 µl) of strain A00149, Fv-des-Prom-T33 (Fv), SG139, or B1-41a were transformed with up to 15 µg of the cosmid pc101, carrying the entire GA gene cluster from *F. fujikuroi*, or one of the circular complementation vectors pDexA, pPFv-P454, and pPFP454:FvP4. Plasmids were cotransformed with pNR1 (nourseothricin resistance marker) (31) or pAN7-1 (hygromycin resistance) (50).

Transformation of Fusarium strains. The preparation of protoplasts and the transformation procedure were carried out as previously described (59), with the following modifications for strain A00149: strain A00149 was preincubated for 7 to 10 days on V8 agar. About 5 x 10⁴ spores were inoculated into 100 ml CM medium. For complementation experiments, 10⁸ protoplasts (in 50 µl) of strain A00149, Fv-des-Prom-T33 (Fv), SG139, or B1-41a were transformed with up to 15 µg of the cosmid pc101, carrying the entire GA gene cluster from *F. fujikuroi*, or one of the circular complementation vectors pDexA, pPFv-P454, and pPFP454:FvP4. Plasmids were cotransformed with pNR1 (nourseothricin resistance marker) (31) or pAN7-1 (hygromycin resistance) (50).
was separated by filtration, and GAs were extracted as described previously and analyzed by GC-MS (63).

Nucleotide sequence accession numbers. The gene sequences for Fv\textit{des} and Fv\textit{P450-4} of \textit{F. verticillioides} A00149 have been deposited in the GenBank database under accession numbers AM946176 and AM946177, respectively.

RESULTS

Presence of a remnant GA gene cluster in \textit{F. verticillioides} (MP-A) strains. Previously, we have shown that \textit{F. verticillioides} strains A00999 and A00149 contain only two of the seven GA-biosynthetic genes in the genome; these encode the GA4 desaturase (DES) and the ent-kaurene oxidase (P450-4) (33). To confirm that this finding is a general feature in \textit{F. verticillioides}, we analyzed eight additional \textit{F. verticillioides} strains, all isolated from maize kernels in different regions of the United States (J. F. Leslie, personal communication), by Southern blot analysis using the seven \textit{F. fujikuroi} GA-biosynthetic genes as probes. All \textit{F. verticillioides} strains revealed hybridizing bands for \textit{des} and \textit{P450-4} but no hybridization signals for the other GA cluster genes (Fig. 2, results shown for \textit{des}, \textit{P450-4}, and \textit{P450-1}). Therefore, \textit{F. verticillioides} contains only the left border of the GA gene cluster found in \textit{F. fujikuroi} and in most of the other species in the \textit{G. fujikuroi} species complex (33).

BLAST comparison of the genes flanking the \textit{F. fujikuroi} GA gene cluster to the corresponding region (Broad Institute; http://www.broad.mit.edu) flanking the remnant putative \textit{F. verticillioides} GA genes identified some highly homologous regions, as well as some striking differences (Fig. 3). Thus, the composition of the genomic region upstream of \textit{des} is almost identical to that in \textit{F. fujikuroi}. Genes encoding a sugar membrane transporter (\textit{smt}) (64) and an ankyrin domain-containing protein (\textit{ank}), as well as an alcohol and an aldehyde dehydrogenase (\textit{alc-dh} and \textit{ald-dh}) (reviewed in reference 57), are located upstream of \textit{des} in both species (Fig. 3). However, \textit{smt} and \textit{ank}, which are immediately adjacent to \textit{des} and share a bidirectional promoter region, are inverted and oriented in the opposite direction in \textit{Fusarium verticillioides} compared with their orientation in \textit{F. fujikuroi}. Interestingly, about 50 kb downstream of Fv\textit{P450-4} is a region that shares 90% identity to the genomic region downstream of the \textit{F. fujikuroi} GA gene cluster \textit{orf1}, \textit{orf2}, and \textit{mfs}), though in the opposite direction, suggesting an inversion of this genomic fragment (Fig. 3).

Expression of the two putative GA biosynthesis genes. To analyze the expression of the two remaining GA-biosynthetic genes, Northern blot analyses were carried out with RNA isolated from different strains of \textit{F. verticillioides} and compared...
to that from *F. fujikuroi* by using des and *P450-4* as probes (Fig. 4). In addition, the filter was probed with the *P450-3* gene, which is located at the right border of the cluster in *F. fujikuroi* and is missing in the remnant *F. verticillioides* cluster (Fig. 3). In *F. fujikuroi*, all three genes were expressed under conditions of nitrogen starvation, but no signal was obtained for des and *P450-4* in *F. verticillioides*. Although we expected Fv*P450-4* not to be expressed or to be expressed only at low levels due to the missing homologous promoter region, there is no obvious reason for the lack of des expression. To scrutinize the expression of these genes, we performed RT-PCR analyses with primers des-1 and des-2 (des) and Fv-*P450-4*-RT-1 and Fv-*P450-4*-RT-2 (*P450-4*), respectively, with RNA isolated from nitrogen-starved mycelium of *F. verticillioides* strain A00149. By this more sensitive method, a transcript was detected for the desaturase gene, and its identity was confirmed by sequencing the RT-PCR fragment (data not shown). However, no transcript was present for *P450-4*. Thus, only one of the two remaining GA cluster genes is expressed in *F. verticillioides*, which might encode a functional GA₄ desaturase.

Functional analysis of the *P450-4* and des genes from *F. verticillioides*. *P450-4* catalyzes the first oxidation steps in GA biosynthesis, converting ent-kaurene in three steps to ent-kaurenoic acid (61). To determine if the corresponding gene from *F. verticillioides* encodes a functional protein despite it not being expressed, we fused the promoter of FFP450-4 with the FvFP450-4 coding sequence (FFP450-4::FvP4). We complemented the *F. fujikuroi* mutant B1-41a (2) with the fusion construct and with the Fv*P450-4* gene driven by the native promoter. Strain B1-41a produces significantly less GA₄ than the wild type due to a point mutation in the FIP450-4 gene that interferes with the splicing of intron 2 and thus translation but not transcription (61). The mutant was cotransformed with vector pNRI carrying the nourseothricin resistance gene. The complete integration of the *P450-4* constructs was confirmed by PCR using primer combinations Fv-*P450-4*-F1 and Fv-*P450-4*-Prom-R2 (original *F. verticillioides* gene) and Fv-*P450-4*-1-Prom-NcoI-R1 combined with Fv-*P450-4*-F1 (Fig. 5A). Since the two types of *P450-4* transcripts that accumulate in the transformed B1-41a, the misspliced native FFP450-4 gene and the introduced FvFP450-4 genes, could not be distinguished by Northern analysis, we performed RT-PCR to differentiate between the longer misspliced FFP450-4 transcripts and the shorter, spliced FvFP450-4 transcripts. By this means, we could show that the fusion of the *F. verticillioides* coding sequence to the *F. fujikuroi* promoter enabled the expression of FvFP450-4 in the B1-41a background (Fig. 5B, lane 7). None of the transformants exhibited a restored GA production, as evidenced by similar GA₄ levels found in the cultures of B1-41a (0.71 mg/10 ml) and of the wild-type GF-1a strain (2); thus, the above results demonstrate that FvFP450-4 does not encode a functional protein.

In contrast to FvFP450-4, *F. verticillioides* is expressed at a low level in *F. verticillioides*. To determine if it encodes a functional GA₄ desaturase, *F. verticillioides* A00149 was cloned from strain *F. verticillioides* A00149 by PCR with primers des-Prom and P450-4-GD1, and three independent clones were sequenced in both directions.
FIG. 6. (A) Northern blot analysis of strains *F. fujikuroi* IMI58289, the *F. fujikuroi* FfΔdes mutant, and transformants of the FfΔdes mutant complemented (+) with Fvdes. Total RNA was hybridized with the probes as indicated. (B) GC-MS analysis of culture filtrates of FfΔdes and of transformants of FfΔdes complemented (+) with Fvdes (T2, T3, and T4). Total ion currents are shown for ethyl acetate extracts as methyl esters trimethylsilyl ethers. Components were identified by comparison of their mass spectra and GC retention times with published data (15). Peaks: 1, GA1; 2, GA15; 3, GA25; 4, GA14; 5, GA16; 6, 7β-hydroxykaurenolide; 7, GA4; 8, gibberellenic acid; 9, GA7; 10, GA40; 11, GA13; 12, fujenoic acid; 13, GA47; 14, GA16; 15, iso-GA3; 16, GA16; 17, GA1; 18, 7β,18-dihydroxykaurenolide; 19, GA3. Ff, *F. fujikuroi*; Fv, *F. verticillioides*; WT, wild type.
The gene revealed 92% and 94% identity at the nucleotide and amino acid levels, respectively, to Fvdes (AJ417493, CAD10289), as well as 89% and 95% identity, respectively, to des from F. proliferatum (Fpdes) (AJ628201, CAF13151) (32). The Fvdes gene was transformed into a des deletion strain of F. fujikuroi (FfΔdes). This mutant was shown to accumulate GA₁ and GA₄ instead of GA₇ and GA₈ (63) (Fig. 1). The results of Southern blot analysis of five transformants clearly showed that some contained multiple copies of the transformed DNA (data not shown), and the results of Northern analysis indicated that Fvdes was highly expressed in some transformants (Fig. 6A). To test the enzymatic activity of FvDES, five of the transformants were cultivated for 10 days in the synthetic IC1 medium (1.0 g/liter NH₄NO₃ as nitrogen source), and the secreted GAs were analyzed by GC-MS. Transformants T3 and T4, which were shown to have high levels of Fvdes expression, were able to produce GA₅ in addition to GA₁ (Fig. 6B). Therefore, Fvdes of strain A00149 encodes a functional protein that fully complemented the biosynthetic block in the FfΔdes mutant. As shown in Fig. 6A, the expression level of Fvdes is much higher in the genetic background of F. fujikuroi than in that of F. verticillioides. One of the transformants with a high expression level, T3, contains at least three gene copies, while for T4 only one copy was present (data not shown), suggesting that the integration site in the genome plays an important role in the expression level.

To investigate if the genomic environment may be responsible for the low expression level of Fvdes in F. verticillioides, we transformed Fvdes back into its original source strain. Transformants were shown to have integrated the des gene in copy numbers from 1 to 3 at different loci (data not shown). Some of these transformants (T2 with one copy, T6 with three copies, and T7 with one copy) indeed have a higher expression level than the recipient strain, F. verticillioides A00149 (Fig. 7). Therefore, the genomic region where the GA biosynthesis genes are located seems to play an important role in their expression level.

The GA regulatory network is functional in F. verticillioides. The results of Northern blot analyses indicated that the expression of P450-4 and des in F. verticillioides remained absent or low regardless of the strain or culture medium (Fig. 4, 6A, 7, and 8B). However, the much higher expression level of Fvdes in F. fujikuroi than in F. verticillioides suggests that nucleotide differences in the Fvdes promoter region in comparison with the Ffdes promoter cannot be the only reason for the different expression levels in these genetic backgrounds. To investigate if the transcription factors that regulate the expression of GA biosynthesis genes are active in F. verticillioides, we transformed the cosmid pCos1, carrying the entire GA gene cluster from F. fujikuroi, into F. verticillioides A00149, and transformants of A00149 carrying pCos1. The genomic DNA was restricted with HindIII. The filter was probed with GA-biosynthetic genes from F. fujikuroi as indicated. (A) Southern blot analysis of F. fujikuroi IMI58289, F. verticillioides A00149, and transformants of A00149 carrying pCos1. The genomic DNA was restricted with HindIII. The filter was probed with GA-biosynthetic genes from F. fujikuroi as indicated. FI, F. fujikuroi; Fv, F. verticillioides; WT, wild type.

FIG. 8. Transformation (+) of F. verticillioides A00149 with the cosmid (pCos1) carrying the entire GA gene cluster from F. fujikuroi. (A) Southern blot analysis of F. fujikuroi IMI58289, F. verticillioides A00149, and transformants of A00149 carrying pCos1. The genomic DNA was restricted with HindIII. The filter was probed with GA-biosynthetic genes from F. fujikuroi as indicated. (B) Northern blot analysis of F. fujikuroi IMI58289, F. verticillioides A00149, and transformants of strain A00149 with pCos1. The filter was probed with GA-biosynthetic genes from F. fujikuroi as indicated. FI, F. fujikuroi; Fv, F. verticillioides; WT, wild type.

FIG. 7. Northern blot analysis of F. fujikuroi wild-type strain IMI58289, F. verticillioides wild-type strain A00149, and A00149 transformed (+) with additional copies of the Fvdes gene from strain A00149. Total RNA was hybridized with Fvdes. FI, F. fujikuroi; Fv, F. verticillioides; WT, wild type.
roi ΔP450-3 mutants express the other GA cluster genes in a wild-type-like manner and produce large amounts of GA$_7$ (63).

In order to compare GA production, we performed GC-MS analysis of the culture extracts after incubating *F. verticillioides* A00149, three pCos1 transformants of A00149 (T2, T5, and T8) carrying the entire *F. fujikuroi* GA gene cluster, and the *F. fujikuroi* wild-type strain IMI58289 in synthetic ICI medium for 10 days (Fig. 9). The transformants were able to produce the full spectrum of GAs as in the wild-type *F. fujikuroi* strain, demonstrating that all essential regulators needed for GA gene expression are present in the genome of *F. verticilloides*.

We directly compared the enzyme activities of FvDES and FfDES in the *F. fujikuroi* background by transforming Fvdes into the *F. fujikuroi* mutant SG139, which lacks the entire GA gene cluster (61). Transformants were screened for integration of the Fvdes gene by diagnostic PCR using the primers des-Prom and des-2. The results of Southern blot analysis revealed that the gene was integrated with one to three

Fig. 9. GC-MS analysis of culture filtrates of wild-type strains *F. fujikuroi* IMI58289 and *F. verticillioide* A00149 and strains of A00149 transformed (+) with pCos1 carrying the entire *F. fujikuroi* GA gene cluster. Total ion current for ethyl acetate extracts after derivatization to methyl esters trimethylsilyl ethers is shown. Peak identities from comparison with published mass spectra (15) are as listed for Fig. 6B, with, additionally, GA$_{42}$ (peak 20). Ff, *F. fujikuroi*; Fv, *F. verticillioide*.
Fusarium were part of recent investigations to characterize different species of the species complex (27, 33, 47, 52). Differences in metabolic chemotypes of one species. For example, several nonproducing strains have retained the entire gene cluster restored in maize isolates on one hand and the apparent deletion of almost the entire FUM gene cluster in banana isolates on the other hand suggests that the discontinuous distribution of gene clusters in highly related strains and species is due to specialization to different host plants and infection strategies during evolution.

We found a similar situation for the presence of the GA gene cluster and the ability to produce GAs in the G. fujikuroi species complex. While we did not find any GA-nonproducing F. fujikuroi strain isolated from rice, almost all the other Fusarium species of the G. fujikuroi species complex with different host plants have lost the ability to produce GAs due to multiple mutations in some GA cluster genes (33). Other genes in these clusters still encode functional enzymes, as they were able to complement the corresponding mutants of F. fujikuroi and restore the GA biosynthesis capability (34).

For F. proliferatum, which is one of the closest relatives to F. fujikuroi, we have studied the reasons for the loss of GA production in more detail. Despite the overall high degree of sequence identity of GA biosynthesis genes in these species, several mutations accumulated in the 5′ noncoding (e.g., FpP450-4) or coding regions (e.g., Fppgs2 and Fpcs/ks) of GA genes in F. proliferatum strain D02945. Complementation of this nonproducing strain with the ggs2 and cps/ks genes from F. fujikuroi restored the ability to produce GAs, demonstrating that the mutations in these genes were the main reason for the loss of GA production (32, 34). In contrast to these results, we recently isolated a GA-producing strain, F. proliferatum ET-1, from the roots of tropical orchids (56). Since F. fujikuroi and F. proliferatum are closely related species, we verified the identity of the latter strain by phylogenetic analysis with five genetic markers. These results clearly demonstrate that the capacity to synthesize GAs and the spectrum of GAs present may differ even between strains of one species.

A similar situation was found for the aflatoxin gene cluster in different species of the Aspergillus section Flavi, which includes species such as A. parasiticus, A. flavus, A. sojae, and A. oryzae. Some of the species produce aflatoxin, while others have lost this ability for different reasons. Recently, it was shown that several nonproducing strains have retained the entire gene cluster, but the production of aflatoxin is not restricted to F. verticilloides, as several isolates of F. proliferatum (MP-D), Fusarium nygamai (MP-G), and F. fujikuroi (MP-C) were also reported to contain the fumonisin gene cluster and to produce significant levels of this group of mycotoxins (9, 49). Recently, a correlation between the production of fumonisins and the host specificity has been shown for F. verticilloides isolates. While members of a distinct population of F. verticilloides are pathogenic on bananas and nonpathogenic on maize and are not able to produce fumonisins, another F. verticilloides subgroup of isolates infect maize and produce fumonisins (41, 42). The banana strains were shown to have a deletion of the fumonisin biosynthesis gene cluster, with only parts of the two terminal FUM genes remaining, suggesting that the ability to produce fumonisins is not essential for banana infection. Transformation-mediated complementation of banana strains with the complete FUM gene cluster restored fumonisin production, as well as pathogenicity on maize seedlings (17). Thus, there seems to be a correlation between fumonisin production and host specificity. The ubiquitous presence of the FUM cluster in maize isolates on one hand and the apparent deletion of almost the entire FUM gene cluster in banana isolates on the other hand suggests that the discontinuous distribution of gene clusters in highly related strains and species is due to specialization to different host plants and infection strategies during evolution.

We found a similar situation for the presence of the GA gene cluster and the ability to produce GAs in the G. fujikuroi species complex. While we did not find any GA-nonproducing F. fujikuroi strain isolated from rice, almost all the other Fusarium species of the G. fujikuroi species complex with different host plants have lost the ability to produce GAs due to multiple mutations in some GA cluster genes (33). Other genes in these clusters still encode functional enzymes, as they were able to complement the corresponding mutants of F. fujikuroi and restore the GA biosynthesis capability (34).
cluster but have acquired mutations in the regulatory gene aflR or in the noncoding or coding regions of three other open reading frames encoding biosynthesis genes. Other strains harbored small or large (more than 1 to 2 kb) deletions in the gene cluster. In several cases, the lack of expression of pathway genes can be explained by mutations in the AreA, FacB, and AflR binding motifs in their promoters (54). The authors suggest that losses of aflatoxin biosynthesis in A. oryzae and A. sojae are the result of a long history of use in industrial brewing processes where this pathway is apparently not needed by the fungus.

In this paper, we show that F. verticillioides, a member of the G. fujikuroi species complex, has lost its ability to produce GAs due to a substantial deletion of the GA gene cluster (Fig. 3). With Fvdes, encoding GA4 desaturase, and FvP450-4, encoding a nonfunctional ent-kauren oxide, there are only two genes left in the genomes of the 10 F. verticillioides strains analyzed, but only Fvdes seems to encode a functional enzyme, albeit with slightly reduced activity. Interestingly, downstream of the two remaining genes there is a genomic region of about 50 kb that is not found in F. fujikuroi, followed by a region with about 90% sequence identity to the F. fujikuroi region immediately adjacent to the GA gene cluster, though with the opposite orientation (Fig. 3). These data demonstrate that not only deletions but also genome rearrangements took place during the evolution of the G. fujikuroi species complex. A similar phenomenon of intercalary inversions, as well as other chromosome rearrangements, has been described from interlineage crosses of Gibberella zeae (18) and from interspecies crosses between isolates of Gibberella fujikuroi and Gibberella intermedia (27).

Recently, similar events of gene duplications, multiple losses, and chromosome inversions were shown for the Magnaporthe grisea ACEI cluster (22). A complete ACEI cluster was found in the genomes of only 4 of the 23 sequenced Pezizomycotina genomes. The authors showed that the main part of the cluster has been distributed from an ancestor of M. grisea to other species by horizontal gene transfer but that evolutionary constraints acted to maintain this cluster in only a few species, probably because of an important role of the yet-unknown product for their pathogenic life style (22). Similarly, highly conserved GA gene clusters might have been distributed by horizontal gene transfer from an ancestor species to other ascomycetes, but only some distantly related species, such as Sphaecoloma manihotiticola (6) and Phaeosphaeria sp. (19) maintained these clusters and produce GAs. Even among the closely related species of the G. fujikuroi species complex, only some are still able to produce GAs, while the others have lost this ability due to mutations in the GA gene cluster and/or to losses of one or more genes (32, 33, 34). F. verticillioides is an example for both GA gene losses and mutations. The remaining two genes are very poorly expressed. There might be different reasons for this. First, the loss of five GA cluster genes could result in low levels of expression of the remaining genes. However, this is not very likely as no gene(s) coding for pathway-specific transcription factors are located in the GA gene cluster in F. fujikuroi or any other species. In this case we would have expected a coordinated expression of all cluster genes, but in fact Fvdes is highly expressed in the F. fujikuroi mutant SG139, which has lost the entire gene cluster by UV mutation. Second, the accumulation of point mutations, e.g., in some of the GATA sequence elements, could be one reason for the reduced expression level of Fvdes, as has been shown for the GA genes FpP450-1 and FpP450-4 in F. proliferatum (32). However, Fvdes, with its slightly altered promoter region with respect to that of Fdes, is expressed in the genetic background of F. fujikuroi much more strongly than in F. verticillioides and was able to complement the GA production defect of the F. fujikuroi Δdes mutant. These results suggest that additional factors, such as the genomic environment, seem to be responsible for the low level of expression of Fvdes. Indeed, by transforming Fvdes back into its original source strain, we revealed several transformants with different numbers of gene copies that have a higher expression level than the recipient strain F. verticillioides A00149.

To check if F. verticillioides has the regulatory network for the synthesis of GAs, we transformed a cosmids with the entire GA gene cluster from F. fujikuroi strain IMI58289 into F. verticillioides A00149. Surprisingly, the seven GA-biosynthetic genes were expressed in some transformants at almost the same high level as in F. fujikuroi. This is only possible if all the necessary transcriptional regulators, which might act in addition to AreA, exist and are active in F. verticillioides. These results clearly corroborate our previous findings in F. proliferatum, where the general transcription regulator AreA and other yet-unknown GA-specific regulator(s) were found to be functional (34).

Recent data from work with Aspergillus nidulans have demonstrated that the chromosomal position of gene clusters appears to affect transcription (5). We could show that the integration of Fvdes into different loci in the F. verticillioides genome can significantly increase the expression level, confirming that the differing histone structure caused by the deletion of the GA gene cluster in F. verticillioides might indeed be very important.

To summarize, we showed that the genomic region containing the remnant GA cluster in F. verticillioides has undergone two rearrangements, a sequence deletion and an inversion of a 50-kb fragment relative to that in the GA cluster of F. fujikuroi. Of the two remaining genes, only one, Fvdes, is still expressed (although at a low level) and encodes a functional enzyme, which has slightly lower activity than the corresponding F. fujikuroi enzyme. The activity was high enough to fully restore GA3 production in the F. fujikuroi Δdes mutant. We suggest that the presence of an active GA gene cluster in all F. fujikuroi strains studied so far and in some F. konzum (33) and F. proliferatum (56) isolates on one hand and the loss of GA production capacity in other species of the G. fujikuroi species complex on the other hand might be correlated with the specialization of the latter to different host plants and/or to pathogenic versus endophytic life styles.

ACKNOWLEDGMENTS

We thank J. F. Leslie for providing F. verticillioides strains, J. Avalos (University of Seville, Seville, Spain) for F. fujikuroi strains IMI58289 and SG139, and J. MacMillan (University of Bristol, Bristol, United Kingdom) for providing F. fujikuroi mutant strain B1-41a.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG; Tu101/9-5, SPP 1152 Evolution of Metabolic Diversity) and Fondo Nacional de Desarrollo Cientifico y Tecnologico (grant 1061127). Furthermore, we thank CONICYT/DFG (project 105-2007)

