In Vitro Kinetics of Prebiotic Inulin-Type Fructan Fermentation by Butyrate-Producing Colon Bacteria: Implementation of Online Gas Chromatography for Quantitative Analysis of Carbon Dioxide and Hydrogen Gas Production

Gwen Falony, An Verschaeren, Feije De Bruycker, Vicky De Preter, Kristin Verbeke, Frederic Leroy, and Luc De Vuyst

Research Group of Industrial Microbiology and Food Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, and Department of Gastrointestinal Research and Leuven Food Science and Nutrition Research Centre, University Hospital Ghent University, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium

Received 17 April 2009/Accepted 17 July 2009

Kinetic analyses of bacterial growth, carbohydrate consumption, and metabolite production of five butyrate-producing clostridial cluster XIVa colon bacteria grown on acetate plus fructose, oligofructose, inulin, or lactate were performed. A gas chromatography method was set up to assess H2 and CO2 production online and to ensure complete coverage of all metabolites produced. Method accuracy was confirmed through the calculation of electron and carbon recoveries. Fermentations with Anaerostipes caccae DSM 14662, Roseburia faecis DSM 16840, Roseburia hominis DSM 16839, and Roseburia intestinalis DSM 14610 revealed similar patterns of metabolite production with butyrate, CO2, and H2 as the main metabolites. R. faecis DSM 16840 and R. intestinalis DSM 14610 were able to degrade oligofructose, displaying a nonpreferential breakdown mechanism. Lactate consumption was observed with A. caccae DSM 14662. Roseburia inulinivorans DSM 16841T was the only strain included in the present study that was able to grow on fructose, oligofructose, and inulin. The metabolites produced were lactate, butyrate, and CO2, without H2 production, indicating an energy metabolism distinct from that of other Roseburia species. Oligofructose degradation was nonpreferential. In a coculture of R. inulinivorans DSM 16841T with the highly competitive strain Bifidobacterium longum subsp. longum LMG 11047 on inulin, hardly any production of butyrate and CO2 was detected, indicating a lack of competitiveness of the butyrate producer. Complete recovery of metabolites during fermentations of clostridial cluster XIVa butyrate-producing colon bacteria allowed stoichiometric balancing of the metabolic pathway for butyrate production, including H2 formation.

The implementation of 16S rRNA gene-based analytical techniques in the ongoing exploration of the microbial diversity of the human colon ecosystem has both broadened and sharpened the prevailing image of its population (17, 24, 32). While a rather conservative perception of the composition of the colon microbiota has dominated gut research for several decades (36), recent studies have revealed the importance of previously largely neglected bacterial groups and have reduced historically numerically overestimated subpopulations to their actual (marginal) size (8, 22, 52). The human colon has been shown to be a remarkably selective environment, which is reflected by a rather shallow microbial diversity (32). Species belonging to the bacterial divisions Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria make up more than 98% of the bacterial population of the human colon (2, 17, 24). However, this superficial uniformity only covers an overwhelming diversity at the lower taxonomic levels; the human colon has been estimated to harbor between 500 and 1,000 species, representing over 7,000 strains, with up to 80% of them considered uncultivable using presently available methodologies (14, 28, 53).

Assessing identity and abundance of the major microbial groups composing the colon microbiota is a first and indispensable step toward a better understanding of the ecosystem of the large intestine (48). However, defining a complex ecosystem such as the human colon requires more than the construction of a catalog of its members (32). A major challenge of gastrointestinal microbiology lies in linking phylogenetic subgroups with particular ecological habitats and niches (7, 8, 23). The latter requires further development of highly discriminating 16S rRNA gene-targeted probes to monitor spatial bacterial distribution, combined with renewed efforts toward species isolation through the application of innovative cultivation methods and media, and extensive metabolic characterization of representative strains (19, 35, 48).

Recently, a global ecological approach, combining efforts in probe development (1, 27), species isolation (3), and metabolic characterization (4, 11, 15, 20), has led to the identification of a functional group of microorganisms, composed of species belonging to the clostridial clusters IV and XIVa, that are responsible for colon butyrate production. As butyrate is re-
garded as a key metabolite for the maintenance of colon health, this functional subunit of the colon microbiota could have a major influence on human well-being and might be considered as a target for prebiotic dietary interventions (25, 35, 45). Some recently described lactate- and/or acetate-converting colon butyrate producers have been reported to be able to degrade prebiotic inulin-type fructans, although the kinetics of their respective breakdown mechanisms have hardly been investigated (10, 20). The enhancement of colon butyrate production observed after consumption of oligofructose or inulin (6, 31, 40)—the so-called butyrogenic effect—as well as the limited stimulatory effect of these prebiotics on the clostridial cluster IV and XIVA colon populations (16, 30) have been attributed to cross-feeding with bifidobacteria, which are still considered the primary fructan degraders (5, 38). Anaeroestipes caccae as well as Roseburia spp, have been shown to be able to (co)metabolize end products of bifidobacterial fructan fermentation (lactate and/or acetate) or to grow on short oligosaccharides and monosaccharides released by Bifidobacterium spp. during fructan degradation (4, 20).

Recently, many clostridial cluster IV and XIVA butyrate producers characterized in detail have been shown to produce gases, mainly CO2 and H2 (12, 15, 20, 46). Consequently, they might be responsible for an enhancement of gas production as a result of fructan fermentation, through either cross-feeding or direct degradation of inulin-type fructans (15, 16). Indeed, inulin-type fructan consumption has been reported to cause some gastrointestinal discomfort related to gas production—essentially, flatulence and bloating (43)—while bifidobacteria, the main beneficiaries of dietary fructan intake, do not produce gases (19, 49). Although CO2 and H2 production by colon butyrate producers could have implications for human intestinal well-being, (in vitro) production has not been satisfactorily monitored up to now, probably due to limited availability of a performant apparatus for (online) gas analysis (15, 20). Moreover, the currently proposed pathway for colon butyrate production does not provide a conclusive quantitative link between bacterial (co)substrate metabolism and H2 formation (11).

This study investigated the kinetics of inulin-type fructan degradation by representatives of the genera Anaeroestipes and Roseburia. A method based on online gas chromatography (GC) was developed to assess gas production qualitatively and quantitatively in a continuously sparged fermentation vessel (GC) was developed to assess gas production qualitatively and quantitatively in a continuously sparged fermentation vessel (GC) was developed to assess gas production qualitatively and quantitatively in a continuously sparged fermentation vessel. (GC) was developed to assess gas production qualitatively and quantitatively in a continuously sparged fermentation vessel.

(ii) Carbohydrate, organic acid, and ethanol determinations. Residual concentrations of glucose, fructose, oligofructose, and inulin (the latter two expressed in mM FE), as well as concentrations of acetate, butyrate, ethanol, formate, and lactate were determined through high-performance liquid chromatography as described previously (19). All samples were analyzed in triplicate. Concentrations not exceeding 10 mM were considered trace concentrations and are not represented in figures but only mentioned in the text and tables.

(iii) Breakdown of oligofructose and inulin. Breakdown of the different fractions of oligofructose was analyzed in detail by gas chromatography as described previously (19, 29). Qualitative analysis of inulin breakdown (OraftiHP) was performed using high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) as described previously (19). Samples were analyzed in duplicate.

(iv) Analysis of gas production. Concentrations of H2 and CO2 in the fermentor gas effluents were determined online through GC (CompactGC; Interscience, Breda, The Netherlands). The apparatus was equipped with two analytical channels, each composed of a carrier gas module, an injection valve, a column oven, and a thermal conductivity detector. Transfer of effluent gases from the fermentor...
tor outlet to the CompactGC was performed using a sample pump coupled to a four-position selection valve, allowing sampling of three fermentation vessels and injection of calibration gas mixtures (Saphir calibration gases; Air Liquide). Reference gas flows for both thermal conductivity detectors were controlled by a digital gas module. CompactGC operating conditions were similar for both channels: valve temperature, 60°C; injection volume, 20 µl; carrier gas module mode, constant pressure (70 kPa); split flow, 5 ml min⁻¹; reference flow, 1 ml min⁻¹; column temperature, 60°C; detector temperature, 110°C. Injections were performed at atmospheric pressure. The CompactGC was controlled using the CGC Editor 1.53 software package (Interscience).

A first analytical channel, used for the determination of H₂ concentrations in the effluent gases, consisted of a 2-m PoraBOND Q guard column (Varian Inc., Palo Alto, CA) coupled to a 10-m Molsieve 5A column (Varian). N₂ (Air Liquide) was used as a carrier gas. A 54.5-s lasting backflush was imposed through the guard column 6.5 s after injection, preventing contaminants including H₂O from reaching the Molsieve 5A column. CO₂ concentrations in the effluent gases were quantified using a second analytical channel. It consisted of a 2-m PoraBOND Q guard column followed by a 10-m main column of the same type (Varian). Helium was used as a carrier gas. A 55.5-s lasting backflush was sent through the guard column 5.5 s after injection. The EZChrom Elite 3.2 software package (Agilent Technologies, Palo Alto, CA) was used for peak integration and subsequent component identification and quantification.

Gas flow through the fermentor vessels was quantified using a Flow Tracker 1000 (Agilent). H₂ as well as CO₂ concentrations in the gas effluents of each fermentor were determined every 30 min. Integration of the data acquired over 48 h of fermentation allowed calculation of the total gas production. To facilitate stoichiometric interpretation, data concerning gas production are represented as dissolved metabolites (in mM), corresponding with the amounts of CO₂ or H₂ produced from 1 liter of fermentation medium.

Carbon and electron recoveries. Carbon recoveries (CRs; expressed in percentages) were calculated by dividing the total amount of carbon recovered in the sugar metabolites by the total amount of carbon present in the added energy source (20). Electron recoveries (ERs; expressed in percentages) for growth in mMCB supplemented with 50 mM FE of inulin could be attributed to the presence of contaminating monosaccharides in the commercial preparation administered (see Fig. S1 and S3 in the supplemental material). Also, in mMCB supplemented with 50 mM FE inulin, A. caccae DSM 14662T, R. faecis DSM 16840T, R. hominis DSM 16839T, and R. intestinalis DSM 14610T were provided in the supplemental material (Fig. S1 to S4); fermentation characteristics of monocultures showing substantial growth are summarized in Table 1. All strains were able to grow in mMCB supplemented with 50 mM of fructose. The main metabolites were CO₂, H₂, and butyrate; traces of lactate and formate were only found during fermentations with R. hominis DSM 16839T. Acetate was partially consumed during fermentations of all strains on fructose except for those with R. faecis DSM 16840T. A fructose/CO₂ consumption/production molar ratio of approximately 1:2 was observed for all strains.

Only R. intestinalis DSM 14610T and, to a lesser extent, R. faecis DSM 16840T proved able to degrade oligofructose (Table 1). In both cases, substrate degradation was slower than with growth in mMCB supplemented with fructose. The main metabolites were CO₂, H₂, and butyrate; no lactate production was observed. Oligofructose degradation profiles revealed a nonpreferential breakdown mechanism, characterized by simultaneous degradation of all fractions (DP3 and DP4) and a minor accumulation of short fractions of oligofructose (mainly inulobiose) and fructose monomers in the fermentation medium (see Fig. S2 and S4 in the supplemental material). Both strains consumed acetate, although this was limited to traces amounts in the case of R. faecis DSM 16840T.

An approximate oligofructose (FE)/CO₂ consumption/production molar ratio of 1:2 was maintained. No explicit metabolic shift was observed in fermentations with R. intestinalis DSM 14610T on oligofructose compared to growth on fructose; acetate consumption by R. faecis DSM 16840T resulted in relatively more butyrate and less H₂ production levels. Minor growth of A. caccae DSM 14662T and R. hominis DSM 16839T in mMCB supplemented with 50 mM FE of oligofructose could be attributed to the presence of contaminating monosaccharides in the commercial preparation administered (see Fig. S1 and S3 in the supplemental material). Also, in mMCB supplemented with 50 mM FE inulin, A. caccae DSM 14662T, R. faecis DSM 16840T, R. hominis DSM 16839T, and R. intestinalis DSM 14610T fermentations revealed only minor growth, which was caused by the

RESULTS

Inulin-type fructan degradation fingerprint of a monoculture of Bifidobacterium longum subsp. longum DSM 11047. Monocultures of B. longum subsp. longum DSM 11047 in MCB supplemented with 50 mM FE of fructose, oligofructose, or inulin were described in a previous paper (19). An inulin-type fructan degradation fingerprint, encompassing growth, carbohydrate consumption, and metabolite production profiles for each substrate, detailed quantitative analysis of oligofructose breakdown showed simultaneous degradation of all different chain length fractions. Cascarone et al. (20) summarized during all fermentations. No H₂ production was found. Growth on oligofructose was substantially faster than that on fructose and inulin. In all fermentations, a butyrate/CO₂ production molar ratio of approximately 1:1 was observed. A metabolic shift toward relatively less acetate consumption and more lactate production—at the expense of butyrate and CO₂ production—was observed with growth on oligofructose compared to growth on fructose or inulin. Detailed quantitative analysis of oligofructose breakdown by R. inulinivorans DSM 16841T revealed simultaneous degradation of all different chain length fractions, accompanied by a momentary accumulation of free fructose and inulobiose in the fermentation medium (Fig. 1D). Inulin degradation was characterized by initial breakdown of short fractions during the first 12 h of fermentation, followed by slow degradation of the long fractions upon further fermentation (Fig. 1E).

Inulin-type fructan degradation fingerprints of monocultures of Anaerostipes caccae DSM 14662T, Roseburia faecis DSM 16840T, Roseburia hominis DSM 16839T, and Roseburia intesti- nalelis DSM 14610T. Graphical representations of the inulin-type fructan degradation fingerprints of monocultures of A. caccae DSM 14662T, R. faecis DSM 16840T, R. hominis DSM 16839T, and R. intestinalis DSM 14610T are provided in the supplemental material (Fig. S1 to S4); fermentation characteristics of monocultures showing substantial growth are summarized in Table 1. All strains were able to grow in mMCB supplemented with 50 mM of fructose. The main metabolites were CO₂, H₂, and butyrate; traces of lactate and formate were only found during fermentations with R. hominis DSM 16839T. Acetate was partially consumed during fermentations of all strains on fructose except for those with R. faecis DSM 16840T. A fructose/CO₂ consumption/production molar ratio of approximately 1:2 was observed for all strains.
presence of monosaccharides in the commercial substrate (see Fig. S1 to S4 in the supplemental material).

A. caccae DSM 14662^T^ was able to grow in mMCB supplemented with 100 mM lactate (Table 1). Metabolite production levels represented an approximate lactate/acetate/butyrate/C\textsubscript{O2}/H\textsubscript{2} consumption/production molar ratio of 4:2:3:4:2. No lactate consumption by *Roseburia* spp. was observed.

Butyrate production pathway in *Anaerostipes caccae* and *Roseburia* species. Analysis of substrate consumption and metabolite production profiles of growth of *A. caccae* DSM 14662^T^, *R. faecis* DSM 16840^T^, *R. hominis* DSM 16839^T^, and *R. intestinalis* DSM 14610^T^ in mMCB supplemented with fructose or oligofructose (or lactate, if 2 mol of lactate is considered equal to 1 mol of FE) revealed acetate/fructose (FE) consumption rates varying between 0 (*R. faecis* DSM 16840^T^) and 0.6 (*A. caccae* DSM 14662^T^). Acetate consumption was negatively correlated with H\textsubscript{2} production. Based on these observations, a modified metabolic pathway for these strains was proposed (Fig. 2). As metabolite production profiles of *R. inulinivorans* DSM 16841^T^ revealed considerable lactate production and the absence of H\textsubscript{2} formation, an alternative route for NADH/H\textsubscript{2} disposal using lactate dehydrogenase was included (Fig. 2). The metabolic pathways proposed allowed theoretical calculations of butyrate, H\textsubscript{2}, and CO\textsubscript{2} production levels based on fructose/oligofructose/inulin (in FE), lactate, and acetate consumption and lactate production measurements (Table 2).
TABLE 1. Growth, carbohydrate consumption, and metabolite production of *Anaerostipes caceae* DSM 14662^T, *Roseburia faecis* DSM 16840^T, *Roseburia hominis* DSM 16839^T, *Roseburia intestinalis* DSM 14610^T, and *Roseburia inulinivorans* DSM 16841^T in mMCB supplemented with 50 mM FE fructose, oligofructose, or inulin or 100 mM lactate

<table>
<thead>
<tr>
<th>Strain</th>
<th>Mean ± SD consumption (mM) of substrate (after 48 h)</th>
<th>Mean ± SD production (mM) of metabolite (after 48 h)</th>
<th>Carbon recovery (%)</th>
<th>Electron recovery (%)</th>
<th>Substrate depletion time (h)</th>
<th>Max. cell population/ (time h)</th>
<th>Max. cell population/ (time h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. caceae DSM 14662<sup>T</sup></td>
<td>50 ± 0.1<sup>a</sup></td>
<td>28.7 ± 1.0<sup>a</sup></td>
<td>58.6 ± 0.4</td>
<td>104.0 ± 0.1</td>
<td>67.4 ± 0.1</td>
<td>0</td>
<td>94.3</td>
</tr>
<tr>
<td>A. caceae DSM 14662<sup>T</sup></td>
<td>86.1 ± 1.8<sup>b</sup></td>
<td>39.9 ± 1.8</td>
<td>63.2 ± 0.4</td>
<td>95.3 ± 0.1</td>
<td>42.8 ± 0.1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>R. faecis DSM 16840<sup>c</sup></td>
<td>38.8 ± 0.2<sup>c</sup></td>
<td>0</td>
<td>30.1 ± 0.5</td>
<td>84.6 ± 0.1</td>
<td>0</td>
<td>0</td>
<td>88.1</td>
</tr>
<tr>
<td>R. faecis DSM 16840<sup>c</sup></td>
<td>12.8 ± 0.2<sup>c</sup></td>
<td>6.5 ± 1.0</td>
<td>15.0 ± 0.4</td>
<td>23.4 ± 0.1</td>
<td>13.6 ± 0.1</td>
<td>0</td>
<td>92.6</td>
</tr>
<tr>
<td>R. hominis DSM 16839<sup>T</sup></td>
<td>50.9 ± 0.2<sup>c</sup></td>
<td>20.8 ± 0.9</td>
<td>55.7 ± 0.1</td>
<td>95.2 ± 0.1</td>
<td>65.1 ± 0.1</td>
<td>0</td>
<td>70.2</td>
</tr>
<tr>
<td>R. intestinalis DSM 14610<sup>T</sup></td>
<td>51.8 ± 1.3<sup>c</sup></td>
<td>36.8 ± 1.1</td>
<td>74.5 ± 0.9</td>
<td>103.5 ± 0.1</td>
<td>57.7 ± 0.1</td>
<td>0</td>
<td>104.4</td>
</tr>
<tr>
<td>R. intestinalis DSM 14610<sup>T</sup></td>
<td>56.0 ± 0.2<sup>c</sup></td>
<td>33.0 ± 0.4</td>
<td>67.5 ± 0.5</td>
<td>101.7 ± 0.1</td>
<td>62.9 ± 0.1</td>
<td>0</td>
<td>91.7</td>
</tr>
<tr>
<td>R. inulinivorans DSM 16841<sup>T</sup></td>
<td>46.4 ± 0.4<sup>c</sup></td>
<td>31.1 ± 0.7</td>
<td>35.7 ± 0.2</td>
<td>38.9 ± 0.1</td>
<td>0</td>
<td>50.4 ± 0.3</td>
<td>97.7</td>
</tr>
<tr>
<td>R. inulinivorans DSM 16841<sup>T</sup></td>
<td>52.3 ± 0.2<sup>c</sup></td>
<td>22.0 ± 0.6</td>
<td>28.6 ± 0.7</td>
<td>30.1 ± 0.1</td>
<td>0</td>
<td>66.7 ± 0.6</td>
<td>96.3</td>
</tr>
<tr>
<td>R. inulinivorans DSM 16841<sup>T</sup></td>
<td>45.8 ± 0.6<sup>c</sup></td>
<td>31.0 ± 1.1</td>
<td>35.5 ± 0.8</td>
<td>40.9 ± 0.1</td>
<td>0</td>
<td>51.0 ± 0.2</td>
<td>99.7</td>
</tr>
</tbody>
</table>

^a The energy source was fructose.
^b The energy source was lactate.
^c The energy source was oligofructose (FE).
^d Traces of formate (6.0 ± 0.3 mM) were included in the calculation.
^e The energy source was inulin (FE).
^f Determined by monitoring the optical density at 600 nm.

Coculture fermentation with Bifidobacterium longum subsp. longum LMG 11047 and Roseburia inulinivorans DSM 16841^T in mMCB supplemented with inulin. In a coculture of *B. longum* subsp. *longum* LMG 11047 with *R. inulinivorans* DSM 16841^T, 24.0 ± 0.8 mM (mean ± standard deviation) FE of inulin was consumed within 48 h of fermentation (Fig. 3A). The main metabolites included acetate (41.8 ± 0.1 mM) and formate (3.1 ± 0.1 mM). No H₂ production was observed. The CR was 107.1%.

Qualitative analysis of inulin degradation revealed fast degradation of short-chain-length fractions of inulin during the first 12 h of fermentation, followed by slow degradation of long fractions (Fig. 3B). No accumulation of oligofructose or short fractions of inulin was observed. Qualitative comparison of HPAEC-PAD chromatograms for inulin degradation in the coculture with those of inulin degradation in the monoculture of *R. inulinivorans* DSM 16841^T (Fig. 1E) revealed initial breakdown of longer-chain-length fractions in the coculture fermentation versus the monoculture.

DISCUSSION

Clostridial cluster XIVa *Firmicutes* are one of the most abundant bacterial groups in the human colon, making up around 25% of the colon microbiota (22). The cluster is composed of a broad group of bacteria, including species of *Anaerostipes*, *Clostridium*, *Coproccoccus*, *Eubacterium*, *Roseburia*, and *Ruminococcus* (14). Many of its members, representing more than 7% of the fecal microbiota (1), have been reported to be major producers of butyrate in the colon (3). These acetate consumers include saccharolytic species belonging to the genus *Roseburia* (10, 12), as well as lactate converters such as *A. caceae* (46). Until now, studies including (partial) metabolic characterization of *Roseburia* spp. and *A. caceae* did not (10, 20) or did not satisfactorily (11, 12, 15, 46) assess gas production by these species quantitatively, although CO₂ and H₂ production are considered key elements of their energy metabolism. During the present study, a GC method was implemented to quantify both CO₂ and H₂ production through the online determination of their respective concentrations in the effluent gases of a fermentor system continuously sparged with N₂. Although GC analyses are per definition discontinuous and offline, requiring subsequent injection, separation, and detection of components in a defined sample volume, the short analysis time (<120 s) of the CompactGC-based method presented here assured its semicontinuous (online) character. Regular sampling of effluent gases combined with gas flow quantification allowed accurate calculation of H₂ and CO₂ concentrations, with CRs and ERs for monoculture fermentations ranging between 88 and 105% and between 84 and 105%, respectively.

Complete quantitative recovery of gaseous and aqueous fermentation products through HPLC and CompactGC during the present study granted a deeper insight into the metabolic routes leading to clostridial cluster XIVa butyrate production. In general, the microbial pathway for butyrate production involves the condensation of two molecules of acetyl coenzyme A (CoA) and their subsequent reduction to butyryl-CoA (9, 11). For the final step of the pathway, the actual butyrate formation, two alternative metabolic routes have been described. Butyrate can be produced using a butyrate kinase, as has been demonstrated in some strains of *Butyrivibrio fibrisolvens* (9). Alternatively, a butyryl-CoA:acetate CoA transferase can move the CoA moiety to external acetate, leading to the production of butyrate and acetyl-CoA, as is the case for *Roseburia* spp. and *A. caceae* (34). Given the abundance of acetate in the human colon, it is not surprising that butyryl-CoA:acetate CoA transferase activity has been proven common among butyrate-producing strains, in contrast to butyrate kinase activity (13, 34, 40). Acetate is produced by nearly all heterotrophic colon anaerobes (8, 22, 36), including bifidobacteria (19, 49), and has...
been shown to be a key intermediate in cross-feeding interactions involving *Bifidobacterium* spp. and butyrate producers during growth on inulin-type fructans (4, 20). Metabolic studies of butyrate producers using the butyryl-CoA:acetate CoA transferase pathway have revealed a high degree of variation among such bacteria concerning their respective needs for external acetate as a cosubstrate. Growth of *A. caccae* DSM 14662, a net acetate converter (46), in an acetate-free medium has been reported (20), while *R. intestinalis* DSM 14610T shows an absolute requirement for the presence of acetate as a cosubstrate (11, 20). Implementation of online GC during the present study revealed a negative correlation between acetate consumption and H₂ production, leading to the formulation of a stoichiometrically balanced pathway for clostridial cluster XIVa butyrate production. The latter includes H₂ production (11) and allows major flexibility regarding internal acetate recycling, probably using an acetate kinase (15). However, the pathway proposed in the present study should not be considered absolute, as the presence/absence of the production of certain metabolites during fermentation might indicate adaptation to particular growth conditions rather than the presence/absence of an operational enzyme system.

Clostridial cluster XIVa H₂ production is thought to be mediated through the combined action of a pyruvate:ferredoxin oxidoreductase and a hydrogenase (26). Production of H₂ using pyruvate:ferredoxin oxidoreductase is exergonic and generally unaffected by the partial pressure of H₂ (37). Indeed, growth suppression associated with high partial H₂ pressure was only observed for *R. faecis* DSM 16840T during growth in mM CB supplemented with fructose. This strain was shown unable to cometabolize acetate, leading to elevated H₂ production levels, probably affecting final hydrogenase efficiency. Reverse activity of NADH:ferredoxin oxidoreductase, probably favored by high partial H₂ pressures (37), has been reported previously in butyrate-producing bacteria (33, 47). Ferredoxin oxidation by a membrane-associated NADH:ferredoxin oxidoreductase would not only lead to NADH/H⁺ formation but is also thought to create a proton motive force, which allows extra ATP production (26).

Producing considerable amounts of lactate and no H₂, *R.
inulinivorans DSM 16841T occupies a singular metabolic position among Roseburia species. As it probably lacks a (functional) hydrogenase, this strain has two routes to regenerate NAD\(^+/H\) out of the NADH\(^+/H\) produced during initial glycolysis (41). One route involves butyrate production using the butyryl-CoA:acetate CoA transferase pathway, with an obligatory equimolar consumption/production of acetate, butyrate, and CO\(_2\) (11, 15, 37). The other pathway generates lactate out of pyruvate using lactate dehydrogenase (37). The first route, which generates even more NADH\(^+/H\) through reverse activity of NADH:ferredoxin oxidoreductase during its initial reactions, is preferred over the second one in the case of slow growth, as shown for fermentations on inulin and fructose. The latter is probably linked with the generation of additional ATP through the generation of the proton motive force discussed above (26). During growth on oligofructose, lactate production was considerably higher.

Although butyrate production is considered a key element for the maintenance of human colon health (25, 45), the susceptibility of butyrate-producing strains toward prebiotic stimulation has hardly been investigated (42). However, a link between bacterial inulin-type fructan degradation fingerprints (20, 39, 50, 51), breakdown and/or uptake mechanisms (19), and in vitro competitiveness of colon bacteria (18) has been established. Extracellular fructan degradation, as is the case for Lactobacillus paracasei subsp. paracasei 8700:2 (39) and Bacteroides thetaiotaomicron LMG 11262 (18), has been shown to be competitively disadvantageous compared to its intracellular or cell-associated counterparts usually encountered in bifidobacteria (19, 49–51). Oligofructose degradation by R. faecis DSM 16840T, R. intestinalis DSM 14610T, and R. inulinivorans DSM 16841T revealed simultaneous degradation of all chain length fractions, a breakdown pattern that is associated with extracellular fructan degradation (39, 51). As such a degradation mechanism is accompanied by elaboration of free fructose into the extracellular environment, providing opportunistic competitors that are not able to degrade inulin-type fructans themselves with a valuable source of energy (21, 23), a decrease in competitiveness is unavoidable. Indeed, during coculture fermentations with R. inulinivorans DSM 16841T and

<table>
<thead>
<tr>
<th>Strain (fermentation substrate)</th>
<th>Butyrate</th>
<th>CO(_2)</th>
<th>H(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. cacaee DSM 14622(^T) (fructose)</td>
<td>64.6</td>
<td>58.6</td>
<td>100.5</td>
</tr>
<tr>
<td>A. cacaee DSM 14622(^T) (lactate)</td>
<td>63.0</td>
<td>63.2</td>
<td>86.1</td>
</tr>
<tr>
<td>R. faecis DSM 16840T (fructose)</td>
<td>38.8</td>
<td>30.1</td>
<td>77.7</td>
</tr>
<tr>
<td>R. faecis DSM 16840T (oligofructose)</td>
<td>16.0</td>
<td>15.0</td>
<td>25.6</td>
</tr>
<tr>
<td>R. hominis DSM 16839T (fructose)</td>
<td>57.8</td>
<td>55.7</td>
<td>94.8</td>
</tr>
<tr>
<td>R. intestinalis DSM 14610T (fructose)</td>
<td>70.2</td>
<td>74.5</td>
<td>103.7</td>
</tr>
<tr>
<td>R. intestinalis DSM 14610T (oligofructose)</td>
<td>73.0</td>
<td>67.5</td>
<td>113.1</td>
</tr>
<tr>
<td>R. inulinivorans DSM 16841T (fructose)</td>
<td>36.8</td>
<td>35.7</td>
<td>42.4</td>
</tr>
<tr>
<td>R. inulinivorans DSM 16841T (oligofructose)</td>
<td>30.0</td>
<td>28.6</td>
<td>38.0</td>
</tr>
<tr>
<td>R. inulinivorans DSM 16841T (inulin)</td>
<td>35.8</td>
<td>35.5</td>
<td>40.6</td>
</tr>
</tbody>
</table>

\(^a\) Based on fructose/oligofructose/inulin, lactate, and acetate consumption and lactate production by clostridial cluster XIVa butyrate producers in mM (16) supplemented with 50 mM FE fructose, oligofructose, or inulin or 100 mM lactate (Fig. 1; Table 1). Calculations are based on the metabolic pathway proposed in Fig. 2.

\(^b\) Theoretical (Fig. 2) and measured H\(_2\) production levels were 0; deviant calculated values are to be attributed to measuring errors for input data (fructose/oligofructose/inulin and acetate consumption or lactate production).

*FIG. 3. Growth, carbohydrate consumption, and metabolite production by a coculture of *Bifidobacterium longum* subsp. *longum* LMG 11047 with *Roseburia inulinivorans* DSM 16841T in mM (16) supplemented with 50 mM FE of inulin (OraftiHP). (A) ○, inulin (FE); □, acetate; ▣, lactate; △, formate; ●, growth of *Bifidobacterium*. (B) Qualitative inulin degradation. An HPAEC-PAD chromatogram is shown.*
B. longum subsp. longum LMG 11047, hardly any end products exclusively attributable to the roseoburial metabolism (butyrate and CO₂) were found. HPAEC-PAD chromatograms of fructose degradation during the first 12 h of fermentation showed striking resemblance with those observed during B. longum subsp. longum LMG 11047 monoculture fermentations (19). In a monoculture, R. inulinivorans DSM 16841T was able to perform complete inulin degradation, an ability previously reported for Bacteroides thetaiotaomicron LMG 11262 (18) and R. paracasei subsp. paracasei 8700:2 (39), both extracellular fructan degraders. Most Bifidobacterium spp. (including B. longum subsp. longum LMG 11047) are—due their intracellular or cell wall-associated fructan degradation mechanisms—limited to degradation of short inulin fractions at the most (19, 44). However, HPAEC-PAD analysis of inulin breakdown by R. inulinivorans DSM 16841T revealed a preference for even shorter fractions than previously reported for B. longum subsp. longum LMG 11047 (18, 19). The ability of the latter strain to quickly metabolize longer-chain-length fractions of inulin than R. inulinivorans DSM 16841T appears decisive for competitiveness. All together, these findings seem to sustain the hypothesis that in vivo stimulation of butyrate-producing clustroidal cluster XIVa colon bacteria (16, 30) is rather to be attributed to cross-feeding interactions than to primary fructan breakdown by these microorganisms (4, 20), stressing the importance of the presence of primary inulin-type fructan degraders, such as some bifidobacteria (19, 44), in the colon.

During the present study, an online GC-based method was implemented to assess gas production during growth of butyrate-producing colon bacteria both qualitatively and quantitatively in a continuously sparged fermentor system. Carbon and electron balances demonstrated the accuracy of the technique. The kinetics of both aqueous and gaseous metabolite production by butyrate-producing clustroidal cluster XIVa colon bacteria during growth on fructose and inulin-type fructans revealed a deeper insight into their energy metabolism and substrate consumption patterns. The latter is indispensable for improving current understandings of the functional role of butyrate-producing colon bacteria in a complex ecosystem such as the human colon.

ACKNOWLEDGMENTS

This research was funded by the Research Council of the Vrije Universiteit Brussel, the Fund for Scientific Research—Flanders (FWO-AL418), the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen; GBOU project IWT-010054), Yakult Belgium NV, and Institute Danone. Gwen Falony was the recipient of a Ph.D. grant from the IWT-Vlaanderen. IWT-010054), Yakult Belgium NV, and Institute Danone. Vicky De Preter and Frederic Leroy were supported by a postdoctoral fellowship from the FWO.

We thank Gino Vrancken (Vrije Universiteit Brussel) and the analytical laboratory team of BENO-Orafti NV for their support.

REFERENCES

Downloaded from http://aem.asm.org on July 31, 2017 by guest

