Validation of Heavy-Water Stable Isotope Probing for the Characterization of Rapidly Responding Soil Bacteria

Zachary T. Aanderud and Jay T. Lennon

W. K. Kellogg Biological Station and Department of Microbiology & Molecular Genetics.
Michigan State University, Hickory Corners, Michigan

Received 22 November 2010/Accepted 26 April 2011

Rapid responses of bacteria to sudden changes in their environment can have important implications for the structure and function of microbial communities. In this study, we used heavy-water stable isotope probing (H$_2^{18}$O-SIP) to identify bacteria that respond to soil rewetting. First, we conducted experiments to address uncertainties regarding the H$_2^{18}$O-SIP method. Using liquid chromatography-mass spectroscopy (LC-MS), we determined that oxygen from H$_2^{18}$O was incorporated into all structural components of DNA. Although this incorporation was uneven, we could effectively separate 18O-labeled and unlabeled DNAs derived from laboratory cultures and environmental samples that were incubated with H$_2^{18}$O. We found no evidence for in vivo exchange of oxygen atoms between DNA and extracellular H$_2$O, suggesting that 18O incorporation into DNA is relatively stable. Furthermore, the rate of 18O incorporation into bacterial DNA was high (within 48 to 72 h), coinciding with pulses of CO$_2$ generated from soil rewetting. Second, we examined shifts in the bacterial composition of grassland soils following rewetting, using H$_2^{18}$O-SIP and bar-coded pyrosequencing of 16S rRNA genes. For some groups of soil bacteria, we observed coherent responses at a relatively coarse taxonomic resolution. Following rewetting, the relative recovery of Alphaproteobacteria, Betaproteobacteria, and Gamma-proteobacteria increased, while the relative recovery of Chloroflexi and Deltaproteobacteria decreased. Together, our results suggest that H$_2^{18}$O-SIP is effective at identifying metabolically active bacteria that influence soil carbon dynamics. Our results contribute to the ecological classification of soil bacteria while providing insight into some of the functional traits that influence the structure and function of microbial communities under dynamic soil moisture regimes.

One of the overarching goals of microbial ecology is to understand the contributions of different taxa to ecosystem processes. This seemingly straightforward task is often hindered by the tremendous complexity of microbial communities. For example, environmental samples typically contain thousands of taxa (44), but a large fraction of this diversity is comprised of dormant or inactive individuals (10, 24, 30). Furthermore, microbial communities are dominated by rare taxa (44), but a large fraction of this diversity is unaccounted for by methods that target somewhat phylogenetically constrained metabolic processes (e.g., methane oxidation). In contrast, H$_2^{18}$O-SIP holds promise for linking the identity and activity of microorganisms, there are some important assumptions and unknowns that remain to be addressed. The location and evenness of 18O incorporation into nucleic acids are not well established. For example, 18O has the potential to be located in the phosphate group, in deoxyribose/ribose sugars, and in nucleobases (i.e., cytosine, guanine, and thymine), since all of these molecular components contain oxygen. There are three specific pathways by which 18O can be incorporated into the phosphate group of nucleic acids. First, 18O can be exchanged between H$_2$O and inorganic phosphate species of
ATP, which is facilitated by pyrophosphatases (6). Second, the F1 component of ATPase can promote isotopic exchange so that the γ-phosphate group of ATP contains 18O (25). The 18O-labeled ATP may then catalyze the formation of glucose-6-phosphate, which serves as a precursor of ribose-5-phosphate and, eventually, nucleic acid biosynthesis. Third, H2 18O can be used as a substrate to convert nucleoside diphosphates to deoxyribonucleoside triphosphates (33). Furthermore, 18O may be incorporated into pyrimidine nucleobases during hydrolysis reactions with citric acid cycle intermediates (e.g., aspartate and carbamoyl phosphate), into deoxyribose via glucogenesis, and into pentose phosphate pathways that use small carbon and oxygen precursors (34). Variation in the evenness of 18O incorporation in all of these pathways may lead to differences in the degree of separation between labeled and unlabeled DNAs during SIP, which can have important implications for drawing conclusions about the metabolic activity of a microbial population (3). Another concern is the potential exchange between 18O and 16O in nucleic acids following DNA replication or RNA transcription. For example, it is fairly well documented that oxygen isotope exchange can occur between water and a variety of substances, including metal complexes (36, 53), organic matter (55), and monosaccharides such as ribose and deoxyribose (7), but the extent of this phenomenon for nucleic acids remains unclear. If a significant amount of isotopic exchange occurs between nucleic acids and cytoplasmic or extracellular water, then it could be problematic to associate microbial taxa with metabolic processes by using H2 18O-SIP.

Despite some methodological uncertainties, H2 18O-SIP is a promising technique for linking the activity of microorganisms to changes in their environment. In particular, H2 18O-SIP may help to assign ecological significance to groups of bacteria that respond to sudden changes in soil moisture. In nature, rainfall patterns can create rewetting events that elicit dramatic changes in soil microbial dynamics and ecosystem activity (18, 20, 58). For example, dry soils generate large pulses of CO2 following episodic precipitation events that are important for balancing terrestrial carbon budgets (47). It is unclear, however, which bacteria are responsible for moisture-mediated pulses of ecosystem activity. Are there coherent taxonomic responses to rewetting (38)? Do these taxa possess functional traits that select for rapid responses to rewetting? Arguably, these questions are likely to become more important given the predictions of altered rainfall patterns under future climate change scenarios (56, 59).

In this study, we conducted a series of experiments to address some of the methodological questions surrounding the H2 18O-SIP technique. First, we used liquid chromatography–mass spectrometry (LC-MS) to determine the location and evenness of 18O incorporation within bacterial DNA. Second, we conducted H2 18O-SIP experiments with DNA from Escherichia coli to test for the exchange of 18O–16O between DNA and extracellular H2O. Third, we tracked the incorporation of 18O into bacterial DNA to assess whether H2 18O-SIP can be used to capture the rapid metabolic responses generated from soil rewetting. We then used bar-coded pyrosequencing of 16S rRNA genes to identify bacterial taxa that responded to a rewetting event in grassland soils and thus contributed to measured pulses of CO2.
Germany). DNA was precipitated from all fractions through two isopropanol (molecular biology grade) washes. Each fraction received 600 μl of ice-cold isopropanol and was incubated overnight at −20°C. These fractions were then centrifuged at 14,000 × g for 40 min, followed by a 10-min centrifugation in 200 μl ice-cold isopropanol. DNAs in all fractions were resuspended in 30 μl of nuclelease-free H2O.

qPCR detection of 18O-labeled DNA. We performed qPCR assays to determine the distribution of DNA within the CXFA gradient. Following centrifugation and fractionation, qPCR was used on all 20 fractions from each SIP run, using a Mastercycler EP Realplex qPCR machine (Eppendorf, Hamburg, Germany) and SYBR green to quantify bacterial DNA obtained with primers that targeted regions of the 16S rRNA gene. Each 30-μl reaction mixture contained the following: 13.5 μl of 2.5× SYBR Rox Real master mix (5 Prim, Inc., Gaithersburg, MD); 0.5 μl of forward primer EuB388 and 0.5 μl of reverse primer Eub518, which make up a universal bacterial primer set (17); 1 μl of DNA template; and 14.5 μl of nuclelease-free H2O. The qPCR standard was generated from a soil bacterium (Micrococcus sp.) by use of a Topo TA cloning kit (Invitrogen). We extracted plasmids from transformed cells (45) and used M13 forward and reverse primers from the cloning kit to generate PCR products that we used for our standard curve (100 to 106 copies/μl). The coefficients of determination (r2) for our assays ranged from 0.96 to 0.99, while amplification efficiencies fell between 0.93 and 0.99. Based on melting curve analyses, we found no evidence for primer dimers. The resulting quantities of rRNA gene copies were normalized by expressing gene copies as ratios to the maximum quantity of copies per grassland replicate, similar to the E. coli qPCR methods described above (see “Ex vivo exchange of 18O in DNA”).

Grassland soil sampling. We collected soils from the succe ssional grassland treatment (T7) located at the W. K. Kellogg Biological Station (KBS) Long-Term Ecological Research (LTER) site in southwestern Michigan. This replicated land-use treatment consists of 1-ha plots that comprise a mixture of perennial grasses and forbs that became established after the field was abandoned from agricultural activity in 1989. The dominant plant species in the T7 treatment include Solidago canadensis (L), Apocynum cannabinum (L), and Phleum pratense (L) (43). Our sampling was conducted on 2 September 2008 following summer dry-down of the soils. We collected and pooled 10 random soil cores (10 cm by 2 cm) from three randomly selected grassland treatments. On average, annual precipitation at the KBS LTER site is 890 mm, with half falling as snow, and the mean annual temperature is 9.7°C (http://www.lternet.edu/sites/kbs). All soils are fine-loamy, mixed, mesic Hapludalfs with a total soil C content of 1.3% and N content of 0.13%, pH of 5.5, and cation exchange capacity of 5.5 cmol kg−1. Soil samples were collected from the Ap horizon, sieved to <2 mm, and used in H2O-SIP microcosms within 5 h of removal.

Soil rewatering and H2O-SIP. We performed H2O-SIP experiments to estimate the rate of 16O incorporation into the DNA of soil bacteria. This information was then used to link bacterial taxa to the metabolic activity associated with soil rewatering (see “Soil CO2 production”). For both of these objectives, we simulated rewatering events with H2O2 in microcosms containing grassland soil. Microcosms consisted of 40-ml borosilicate glass vials with polypropylene, siliconized screw caps with microcups of 3 g of grassland soil. Soils were incubated with H18O for different durations (0, 48, and 72 h). The experiment was initiated by evenly applying 600 μl of H218O (97 atom% 18O; Isotech, Sigma-Aldrich, St. Louis, MO) to the surface of each grassland soil microcosm (3 grassland replicates × 3 sampling times = 9 microcosms). The rewatering increased gravimetric soil moisture 5-fold, from ~0.05 to 0.25 g H2O g soil−1. Prior to rewatering, gravimetric water content was estimated as the difference in the masses of soil before and after drying at 105°C for 48 h. The microcosms were incubated at 25°C in a temperature-controlled incubator. Total genomic DNA was extracted from the microcosm soil by using a PowerSoil DNA isolation kit (MoBio, Carlsbad, CA). We performed H218O-SIP on the resulting DNA by using the methods described above.

Soil CO2 production. We quantified the effects of rewatering on soil microbial metabolism by measuring the evolution of CO2 in the headspace of the microcosms over the duration of the experiment. To accurately measure transient CO2 pulse dynamics and the rate of CO2 production, microcosms were destructively harvested at 12-h increments over a 96-h time span, resulting in a total of 27 experimental units (3 grasslands × 9 sampling times from 0 to 96 to 27 microcosms). For the 0-, 48-, and 72-h sampling times, we measured soil respiration after rewatering with H218O. For the remaining time points (12, 24, 36, 48, 54, and 96 h), rewatering was performed with nuclelease-free unlabeled water. We evaluated the rate of soil respiration by removing 1 ml of gas from the headspace of each microcosm with a 1-ml syringe, measuring the CO2 concentration (ppm) in the gas on a CO2 gas analyzer (LI-820; Li-Cor Biosciences, Lincoln, NE), and regressing the total amount of CO2 respired (μg C-CO2 g soil−1) by the harvest time of each microcosm. We stored microcosms at −20°C until further processing.

Taxonomic responses to rewatering. To link bacterial taxa to moisture-induced pulses of CO2, we pyrosequenced the 16S rRNA genes from bacteria in the 0-h and 72-h H218O soil incubations. Specifically, we selected, pooled, and sequenced two fractions within the 0-h gradients (fractions 12 and 13, with buoyant densities in CsTFA of 1.531 to 1.546 g/ml to identify bacterial taxa immediately following the rewatering event. We then selected, pooled, and sequenced two fractions within the 72-h gradients containing 18O-labeled DNA (fractions 9 and 10, with buoyant densities in CsTFA of 1.574 to 1.585 g/ml). This combined SIP procedure was performed on soil from three replicate grassland plots. We used bar-coded pyrosequencing of the 16S rRNA gene to characterize shifts of bacterial taxa following rewatering. The pyrosequencing procedures are described in greater detail elsewhere (16, 23). Briefly, 16S rRNA genes were amplified using a 27F and 338R primer set with unique 12-nucleotide (nt) error-correcting Golyar bar codes under the following thermal cycle conditions: an initial denaturation step at 94°C for 3 min, followed by 35 cycles of denaturation at 94°C for 45 s, annealing at 50°C for 30 s, and extension at 72°C for 90 s. PCR amplicons from each sample were pooled at approximately equimolar concentrations prior to pyrosequencing. Samples were sequenced at the Environmental Genomics Core Facility at the University of South Carolina in a 454 Life Sciences FLX genome sequence (Roche, Branford, CT) instrument. Sequences were analyzed according to the methods outlined by Fierer et al. (16). To ensure the accuracy and quality of pyrosequencing, only sequences of >200 bp were included in the analysis (22). Phylotypes were identified using Megablast at a minimum coverage of 99% and a minimum pairwise identity of 97%. The phylogenetic identities of sequences were determined with BLAST searches against the Greengenes database (http://greengenes.secondgenome.com) (12), using an E value cutoff of 1e−10 and the Hugenholtz taxonomy.

To assess compositional responses to rewatering, we first calculated the relative recoveries of taxonomic groups as the total number of phylotypes in a given group divided by the total number of phylotypes present in each sample. We restricted our analyses to taxa that comprised more than 1% of all phylotypes and demonstrated ≥0.5% differences in relative recovery. Next, shifts in bacterial composition in response to rewatering were assessed for each grassland replicate (n = 3) by quantifying the change in relative recovery of taxa between 0 and 72 h of H218O application. We tested for the significance of these shifts in bacterial composition following rewatering by constructing 95% confidence intervals (sample mean ± [1.96 × standard error]) around the mean change for each taxonomic group. If the confidence intervals overlapped with zero, we concluded that there was no significant change in the relative recovery of a taxonomic group following rewatering. Furthermore, we quantified changes in bacterial taxon richness over the rewatering periods by using Chao1 diversity estimation (4) for each of the H218O-SIP runs.

RESULTS

Location of 18O in DNA. Results from LC-MS revealed that oxygen from H18O was incorporated into all structural components of dTMP of *E. coli*, including the phosphate group, deoxyribose, and thymine. Naturally occurring dTMP has a molar mass of 322 and contains a total of eight oxygen atoms; four of these are in the phosphate group, two in the pentose sugar, and two in the thymidine nucleobase. If any of the 16O atoms were replaced by 18O, we would expect the molar mass of dTMP to increase by 2, for a total possible mass shift of 16 in a fully 18O-labeled dTMP molecule. After incubating unlabeled *E. coli* DNA with H216O, the resulting dTMP peaked predominantly at a mass-to-charge ratio (m/z) of 321 in the LC-MS spectrum (Fig. 1A). After incubating unlabeled *E. coli* DNA with H218O, the resulting dTMP exhibited substantial peaks at 321, 325, 327, 331, 333, and 335 m/z (Fig. 1A). These multiple peaks suggest that the number of 16O atoms incorporated into dTMP is variable, ranging from approximately 4 to 14 extra neutrons (or 2 to 7 18O atoms). The largest of these peaks occurred at 333 and 335 m/z, corresponding to the addition of six and seven 18O atoms, respectively. Because dTMP contains only eight O atoms and no structural component of
DNA contains only one O atom, we can infer that 18O incorporation from H_2^{18}O occurred in all three components of DNA (Fig 1B). The relatively smaller peaks throughout the spectrum, at 322 m/z in the unlabeled DNA and at 324, 326, and 328 m/z in the 18O-labeled DNA, most likely occurred from the addition of an extra neutron into DNA from 13C. This phenomenon is common and can most likely be attributed to the natural abundance of 13C/12C (≈1%) in the E. coli inoculum and the medium used in the H_2^{18}O incubations.

Ex vivo exchange of 18O in DNA. Our results suggest that it is unlikely that H_2^{18}O-SIP is strongly affected by ex vivo isotopic exchange. 18O in the 18O-labeled DNA from E. coli did not undergo ex vivo exchange with oxygen from H_2O. If significant isotopic exchange had occurred, we would have expected there to be a decrease in the buoyant density of 18O-labeled DNA following incubation. In contrast, there was no difference in the buoyant density for the fraction with the maximum quantity of 18O-rRNA genes within 11 fractions of the gradient (with densities ranging from 1.531 to 1.585 g ml$^{-1}$) before and after the 7-day incubation in H_2^{16}O. Therefore, 18O-labeled DNA possessed the same buoyant density and retained its extra neutrons from 18O following incubation in unlabeled H_2O. 18O-labeled DNA resided in fractions with densities of 1.561 to 1.585 g/ml, while unlabeled DNA resided in fractions with densities of 1.531 to 1.548 g/ml.

Soil rewetting and H_2^{18}O-SIP. As expected, bacteria in the dry grassland soil rapidly responded to rewetting. CO$_2$ accumulated in microcosms at a rate of 1.34 μg C-CO$_2$ g$^{-1}$ soil h$^{-1}$ (linear regression $r^2 = 0.76$; $P < 0.0001$). By 72 h, CO$_2$ concentrations had increased from 3.04 ± 0.35 (mean ± standard error of the mean [SEM]) to 113 ± 9.11 μg C-CO$_2$ g$^{-1}$ soil. At the same time, 18O from H_2^{18}O was rapidly incorporated into the DNA of metabolically active soil bacteria. Based on H_2^{18}O-SIP time series, the 18O incorporation into DNA...
caused the buoyant density of DNA to increase by 0.013 to 0.054 g/ml within the first 48 h (Fig. 3). We observed an increase in the denser CsTFA fractions (i.e., fractions 8 to 11, with buoyant densities of 1.561 to 1.598 g/ml) in the 72-h incubation, suggesting that bacteria continued to produce 18O-labeled DNA over the duration of the experiment. However, at both 48 and 72 h, there was always a substantial quantity of unlabeled rRNA genes present in the less dense CsTFA fractions (i.e., fractions 12 to 14, with buoyant densities of 1.531 to 1.548 g/ml).

Taxonomic responses to rewetting. Based on pyrosequencing of the 16S rRNA genes from H$_2^{18}$O-SIP, we found that soil bacteria exhibited different responses to rewetting (Fig. 4A). Bacterial taxa were considered positive responders if they produced new cells labeled with 18O and increased in relative recovery following rewetting. For example, the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria all increased in relative recovery following rewetting. The most dra-

![FIG. 3. Rapid incorporation of 18O from H$_2^{18}$O into bacterial DNA following rewetting of dried soils. Panels show the resulting distributions of 16S rRNA genes from replicate (n = 3) grassland soils in CsTFA gradients. Soils were incubated with H$_2^{18}$O for 0 h (A), 48 h (B), and 72 h (C). Values are mean ratios of maximum quantities of rRNA genes (n = 3) ± SEM from qPCRs.](image)

![FIG. 4. Taxonomic responses to soil rewetting. Values are mean changes (n = 3) in relative recoveries of taxa after rewetting (72 h) and before rewetting (0 h) with H$_2^{18}$O for phyla or classes (A) and families (B). Asterisks denote taxonomic groups that responded significantly to rewetting based on the overlap of 95% confidence intervals with zero change in relative recovery.](image)
matic change occurred for the Alphaproteobacteria, which increased in their relative recovery by 10%. Together, these positively responding taxa accounted for 30% ± 1.7% of all phylotypes prior to the rewetting event. In contrast, the relative recovery of the Chloroflexi and Deltaproteobacteria, which accounted for 3.2% ± 0.4% of the initial phylotypes, decreased after the rewetting event. The response of some bacterial taxa to rewetting was variable. For example, the mean changes in relative recovery of Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, TM7, and Verrucomicrobia ranged from −3.7 to 0.9%; the 95% confidence intervals around the average shifts in relative recoveries overlapped with zero, indicating that these taxonomic groups did not respond significantly to rewetting. This variability could be explained in part by examining the bacterial responses at a finer taxonomic resolution. At the family level, we found that nine families increased in relative recovery by at least 0.5% following the rewetting event, and three of these nine came from phyla with variable responses (Fig. 4B). For example, we found that the Rubrobacteraceae (Actinobacteria phylum), Acidobacteriaceae (Acidobacteria phylum), and Gemmatimonadaceae (Gemmatimonadetes phylum) all responded positively and significantly to rewetting. The remaining six families belonged to phyla that demonstrated coherent positive responses to rewetting. Within the Alphaproteobacteria, we observed significant positive responses by the Caulobacteraceae, Hyphomicrobiaceae, and Sphingomonadaceae. In particular, the relative recovery of the Sphingomonadaceae increased by 10% following rewetting. In addition, we saw positive responses by the Comamonadaceae (Betaproteobacteria) and the Xanthomonadaceae (Gammaproteobacteria). Based on Chao1 estimates, there was no difference between the numbers of phylotypes in the initial (0 h) and final (72 h) SIP samples (5,963 ± 587.0 versus 6,679 ± 204.1 [mean ± SEM], respectively; paired t test \(t_2 = 1.15 \) [\(P = 0.42 \)]).

DISCUSSION

Over the past decade, SIP has emerged as an effective tool for linking the structure and function of microbial communities. In this study, we evaluated some of the mechanisms and requirements (e.g., motility, energized cell membrane, DNA repair, etc.) in the absence of new cell growth (52). These active but nonreplicating bacteria would presumably be detected if soils with 95 atom% \(H_2^{18}O \), three bands of DNA (instead of two) were observed in cesium chloride gradients stained with SYBR green 1 (48). It was hypothesized that the additional band of DNA belonged to “cross-feeding” taxa, which over time preyed upon or decomposed \(^{18}O \)-labeled organisms and their cellular constituents. Alternatively, an additional band could reflect semiconservative DNA replication (48). Although our incubations with \(E. \) coli were much shorter than those in previous work with environmental samples (48), the preferential labeling of different DNA components may also give rise to variability in the buoyant densities in \(H_2^{18}O \)-SIP. Specific pathways for DNA synthesis directly incorporate \(^{18}O \) from \(H_2^{18}O \) (i.e., formation of phosphate), while others derive \(^{18}O \) from both water and oxygen-containing organic compounds. For example, it was shown that oxygen associated with C-3 and C-5 of deoxyribose was derived predominantly from glucose, not from the surrounding cytoplasmic water (41). Thus, any unlabeled C substrate from growth media or the surrounding environment (e.g., soil) has the potential to be incorporated into deoxyribose over \(^{18}O \) from \(H_2^{18}O \), but this interaction may change as more carbon becomes labeled with \(^{18}O \). Regardless of the uneven labeling during \(H_2^{18}O \)-SIP, \(^{18}O \) incorporation was sufficient to clearly separate fractions of \(^{18}O \)-labeled and unlabeled DNAs from both cultures and environmental samples (Fig. 2 and 3). In addition, we found that the \(^{18}O \) in \(^{18}O \)-labeled DNA from \(E. \) coli did not undergo any detectable ex vivo exchange with \(^{18}O \) from unlabeled \(H_2^{18}O \). These results suggest that \(^{18}O \) incorporation into DNA is relatively stable and that \(H_2^{18}O \)-SIP is appropriate for making inferences about the metabolic activity of microbial taxa. Future studies, however, should evaluate whether in vivo isotopic exchange associated with processes such as DNA repair (54) facilitates \(^{18}O \)-\(^{18}O \) substitutions.

Linking \(H_2^{18}O \)-SIP to soil \(CO_2 \) production. In a previous study, separation of \(^{18}O \)-labeled and unlabeled DNAs was achieved after incubating soil for 6 to 21 days (48). In this study, we measured consistent shifts in the buoyant density of 16S rRNA genes from soil bacteria after only 48 h of incubation with \(H_2^{18}O \) (Fig. 2 and 3). This shorter incubation time may reduce the occurrence of artifacts associated with exposure of environmental samples to laboratory conditions for prolonged periods. In addition, a 3-day \(H_2^{18}O \) incubation is a time frame that captures rapid pulses of ecosystem activity generated from rewetting of dry soils (19). Therefore, it is likely that many of the \(^{18}O \)-labeled bacterial taxa contributed, at least in part, to the observed pulses of \(CO_2 \) that followed rewetting. There are a number of important caveats, however, that must be considered in using \(H_2^{18}O \)-SIP to make inferences about the contributions of soil microorganisms to \(CO_2 \) pulses. First, not all bacteria generate \(CO_2 \). For example, ammonia-oxidizing bacteria use \(NH_4^- \) as an electron donor and \(O_2 \) as an electron acceptor; \(CO_2 \) is not generated as a by-product of their metabolism. Second, it is possible that some heterotrophic bacteria contributed to soil \(CO_2 \) production but did not grow and become labeled with \(^{18}O \). For example, soil bacteria may have responded to rewetting but used \(H_2^{18}O \) predominantly for catabolism to meet maintenance energy requirements (e.g., motility, energized cell membrane, DNA repair, etc.).
RNA-SIP were used instead of DNA-SIP (57). Lastly, there were nonbacterial taxa (e.g., archaea, fungi, and nematodes) in our grassland soil samples that were not targeted by our PCR primers but almost certainly produced CO₂ in response to rewetting. Therefore, it is important to acknowledge that our H₂¹⁸O-SIP assay captured some microorganisms that did not contribute to CO₂ pulses but also missed some microorganisms that did contribute to CO₂ pulses.

Coherent taxonomic responses to rewetting. Given the tremendous diversity of microorganisms, recent attention has focused on whether the ecological responses of bacteria can be predicted at relatively high levels of taxonomic resolution (38). In other words, can we make generalizations about how phyla respond to environmental changes, or must we understand bacterial behaviors on a strain-by-strain basis? In general, our results provide evidence that bacterial responses to rewetting are coherent at fairly coarse taxonomic levels of resolution. Specifically, the Betaproteobacteria and Gammaproteobacteria exhibited moderate increases in relative recovery, and Alphaproteobacteria increased by 10% following soil rewetting. This positive response represents the rapid growth of ~500 individual phylotypes within the Alphaproteobacteria alone. In particular, we found that the Sphingomonadaceae—a group of Gram-negative, aerobic heterotrophs that are common in soils (26, 40)—were chiefly responsible for the increase in relative recovery of the Alphaproteobacteria following rewetting. Conversely, the relative recovery of Chloroflexi and Deltaproteobacteria declined after rewetting. This reduction in relative recovery may reflect the fact that some bacteria experience stress by sudden changes in osmotic pressure and are unable to rapidly grow following rewetting (47). Alternatively, a decrease in relative recovery could represent a dilution effect whereby neutrally responding taxa were less likely to be detected in our pyrosequencing efforts owing to the increased probability of recovering positively responding taxa. Furthermore, it is possible that we missed the responses of other bacterial taxa since we evaluated only two ¹⁸O-labeled fractions within the H₂¹⁸O-SIP study; other taxa may have been recovered in fractions immediately adjacent to the fractions evaluated in our study.

The response of bacterial taxa to rewetting is likely to be influenced by the distribution of functional traits. For example, fast-growing (τ-selected), copiotrophic microorganisms have high rates of resource uptake (i.e., V_{max}) that would allow them to take advantage of sudden increases in substrate availability that accompany soil rewetting events (47). In contrast, slow-growing (k-selected), oligotrophic microorganisms benefit from having a higher affinity (i.e., lower half-saturation constant [K₅₀]) for growth-limiting resources, which may allow them to persist under less productive conditions (e.g., prolonged periods of drought). Using this framework, our data are coherent at fairly coarse taxonomic levels of resolution. Specifically, the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria exhibit copiotrophic behavior, while some of the Chloroflexi, Deltaproteobacteria, and other nonresponsive taxa may include oligotrophic bacteria. Specifically, the sphingomonads are recognized as a copiotrophic group of soil bacteria. These microorganisms exhibit extreme metabolic versatility, as demonstrated by their ability to consume a wide range of organic carbon substrates, including glucose, polysaccharides, and aromatic hydrocarbons (1, 28, 29). The taxonomic responses from our rewetting experiment are consistent with other studies that have attempted to classify the ecology of soil bacteria. For example, the relative recovery of Betaproteobacteria increased along a carbon mineralization gradient (15), while the relative recoveries of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria from different land-use types responded positively to the addition of simple carbon substrates such as glucose, glycerine, and citric acid (13).

It seems likely, however, that functional traits other than those associated with resource acquisition may also contribute to bacterial rewetting responses. For example, many Proteobacteria, including the Sphingomonadaceae, secrete a diverse compilation of exopolymERIC substances (11, 14). These substances can retain moisture in dry soils (37, 42) and allow bacteria to capitalize on resources when they become available. Also, the presence of aquaporins, channel proteins that enhance the permeability of cell membranes, should allow bacteria to rapidly expel osmolytes following rewetting and thus maintain equilibrium with their environment (8, 47). Of the sequenced Gram-negative bacteria with aquaporins, approximately 80% belong to phyla that responded positively to rewetting (i.e., Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) (50). Other traits that may be important for soil microbes that experience drying-rewetting cycles are motility (9), tolerance to low oxygen (32), and the ability to enter and exit a dormant state (24).

Summary and future applications. Our findings demonstrate that H₂¹⁸O-SIP is a viable method for identifying bacteria that rapidly respond to soil rewetting and potentially contribute to pulses of ecosystem activity (e.g., CO₂ flux). A number of studies have documented the effects of rewetting stress on individual strains of soil bacteria (2, 21, 42, 51), but the information comes largely from a phylogenetically restricted group of cultured bacteria. In examining an intact soil bacterial community, we found that there were coherent positive responses of the Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria to rewetting. Additional studies are needed to elucidate the mechanisms behind these patterns, especially given the predicted changes in precipitation regimes under future climate change scenarios (56, 59). Besides understanding bacterial responses to fluctuations in moisture, H₂¹⁸O-SIP has many other potential applications in microbial ecology. For example, this form of SIP may help to identify temperature-sensitive microorganisms involved in decomposition, characterize the activity of functional genes, or serve as an isotopic backdrop to identify bacteria that are capable of remediating contaminated ecosystems. Last, H₂¹⁸O-SIP could also be used in combination with metagenomic approaches (5) to characterize genes that are regulated under conditions causing fluctuations in microbial growth and activity.

ACKNOWLEDGMENTS

We acknowledge A. D. Jones for technical assistance with the preparation and running of dTMP on the LC-MS; B. Lehmkuhl, B. Roller, and W. J. Sul for technical assistance; M. B. Leigh and D. H. Buckley for SIP advice during the early stages of the study; N. Fierer for pyrosequencing support; and J. Thomas Lennon for editorial suggestions.

This research was funded in part the Rackham Research Endowment and the Michigan Agricultural Experiment Station (MAES). In addition, this project was supported by National Research Initiative.