Silicon and Phosphorus Linkage with Iron via Oxygen in the Amorphous Matrix of *Gallionella ferruginea* Stalks

Tomoko Suzuki, Hideki Hashimoto, Atsushi Itadani, Nobuyuki Matsumoto, Hitoshi Kunoh, and Jun Takada

Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan

Bacterial species belonging to the genus *Gallionella* are Fe-oxidizing bacteria that produce uniquely twisted extracellular stalks consisting of iron-oxide-encrusted inorganic/organic fibers in aquatic environments. This paper describes the degree of crystallinity of *Gallionella* stalks and the chemical linkages of constituent elements in the stalk fibers. Transmission electron microscopy revealed that the matrix of the fiber edge consisted of an assembly of primary particles of approximately 3 nm in diameter. Scanning transmission electron microscopy revealed the rough granular surfaces of the fibers, which reflect the disordered assembly of the primary particles, indicating a high porosity and large specific surface area of the fibers. This may provide the surface with broader reactive properties. X-ray diffractometry, selected-area electron diffraction, and high-resolution transmission electron microscopy together showed that the primary particles had an amorphous structure. Furthermore, energy-dispersive X-ray analysis and Fourier transform infrared spectroscopy detected the bands characteristic of the vibrational modes assigned to O-H, Fe-O-H, P-O-H, Si-O-H, Si-O-Fe, and P-O-Fe bonds in the stalks, suggesting that the minor constituent elements P and Si could affect the degree of crystallinity of the fibers by linking with Fe via O. This knowledge about the mutual associations of these elements provides deeper insights into the unique inorganic/organic hybrid structure of the stalks.

Iron has long been recognized as a potential energy source for certain bacteria (16). *Gallionella ferruginea*, an iron-oxidizing bacterium, has been considered to depend on Fe(II) oxidation as an electron source for autotrophic growth (23). Biotic and/or abiotic depositions of the oxidized form Fe(III) give rise to extracellular, ferric oxide-encrusted, spirally twisted stalks (18, 21). The *Gallionella* cells and associated stalks are found ubiquitously in various aquatic environments such as iron seeps (1), creeks (15), groundwater (30), drinking-water distribution systems (35, 44), wetland rhizospheres (56), and acid mine drainage (3).

Bacterial cells and their surfaces have been often reported as nucleation sites for both metal sulfides and complex polymorphic (Fe, Al) silicates (19, 53). Typical examples are Fe-oxidizing bacteria such as *Gallionella, Leptothrix, Mariprofundus*, and *Rhodobacter* (5, 21, 26, 41, 47, 51, 55), which are known to have an ability to form extracellular Fe-rich stalks or sheaths. The elements precipitated in such structures are largely affected by the aquatic environments that the bacteria inhabit. According to Ridgway and Olson (44), the stalks of *Gallionella* found on pipe surfaces in drinking water distribution systems contain a large quantity of Fe, Si, Al, and Ca and traces of P and S. On the other hand, the stalks from a lake metalimnion were found to contain Fe, Si, Ca, and S but not Al and P (27). Our previous scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM)/energy-dispersive X-ray (EDX) analyses (52) demonstrated an almost uniform distribution of Fe, O, Si, and P in *Gallionella* stalks collected from a water purification system, as was similarly found in *Leptothrix ochracea* sheaths (47). It has been reported that Fe exists in stalk fibers in the form of FeOOH, α-FeOOH (4, 5, 6, 33), Fe(OH)$_3$ (20), 2-line ferrihydrite (33, 57), or Fe$_2$O$_3$ (24). Chan et al. (6) analyzed the biofilms found in the cloudy water of flooded underground tunnels (consisting predominantly of ferrihydrite- and goethite-encrusted sheaths and stalks characteristic of *Leptothrix* sp. and *Gallionella ferruginea*, respectively) by microscopy and spectroscopy. They found that the biofilm filaments from the cloudy water consisted of amorphous iron oxyhydroxide and that each filament contained one thin, pseudosingle crystal core surrounded by a porous layer of nanocrystalline 2-line ferrihydrite. In contrast to the accumulated data on Fe forms, our understanding about the constitutional elements other than Fe, specifically the nature of the interaction of Si, P, and/or other minor elements with Fe and/or O in the structures, is limited. As far as we know, the only published information available is the hypothesis by Kennedy et al. (32) for silicified iron oxides in *Gallionella* stalks, which states that adsorbed water might be replaced by adsorbed Si in the form of Fe-O-Si bonds. We believe that chemical linkages of these minor elements such as Si and P with Fe and O must be closely associated with the degree of crystallinity of the stalk and sheath matrices because it is known that inorganic ligands such as SiO$_4$ and PO$_4$ in Fe(III) hydrolysates interfere with the polymerization and crystallization of Fe oxyhydroxide precipitates (9, 11, 46).

With this in mind, we have in this study attempted to analyze the basic surface structures of the *Gallionella* stalk by STEM, and the degree of crystallinity of its matrix by X-ray diffractometry (XRD), selected-area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM). The elemental constituents and the nature of their chemical associations in the matrix were analyzed by EDX analysis and Fourier transform infrared (FTIR) spectroscopy.

MATERIALS AND METHODS

Sample collection and specimen preparation for electron microscopy. Ochreous flocs associated with microbial mats attached to the wall of a...
groundwater receiving tank were collected from the freshwater purification pilot plant at the farm of Okayama University. The collected samples were washed repeatedly with sterilized ultrapure water. Although typical twisted stalks produced by Gallionella ferruginea were confirmed to be the predominant deposits in the flocs by using a differential interference contrast microscope (BX-51; Olympus), it was unavoidable that a sample under consideration could be a mixed population because natural product sampling was conducted in an open-air tank. For TEM, the specimens were collected by centrifugation and fixed on ice for 2 h with a mixture of 2.5% glutaraldehyde, 1% OsO₄, and 4.5% sucrose in 0.1 M cacodylate buffer (pH 7.4), followed by embedding in agar. Small pieces of washed agar block were stained with 0.5% aqueous uranyl acetate at room temperature for 30 min and then dehydrated in a graded series of ethanol before being embedded in Quetol 651 resin mixture (NEM, Japan). Ultrathin sections (70 nm) were cut from the resin blocks and mounted onto Cu grids for observation by a TEM (H-7100; Hitachi, Japan) operated at 80 kV.

For SEM analysis, a suspension of the washed specimens was dropped onto an Al stub and vacuum dried. The specimen was Pt coated and observed with an SEM (S-4300; Hitachi, Japan).

Washed specimens were also resuspended in 100% ethanol, mounted onto Cu grids precoated with an amorphous lacy carbon film, and air dried for HRTEM analyses. HRTEM, SAED, and STEM/secondary electron imaging (STEM/SEI) were performed using a TEM/STEM (JEM-2100F; JEOL, Japan) with spherical aberration (Cₐ) corrector (CEOS, Germany) operated at 200 kV. The Cₐ corrector was not employed for the TEM mode but for the STEM mode. Fast Fourier transformation (FFT) images were constructed using Gatan digital micrograph software.

Pore distribution and specific surface detection. Nitrogen adsorption isotherms at 77 K were measured in liquid nitrogen baths by a Belhor mini-II adsorption measurement instrument (Bel Japan, Inc.). Prior to measurement, the repeatedly washed and vacuum-dried sample was degassed in vacuo for 4 h at 100°C. The specific surface areas were calculated from the Brunauer-Emmett-Teller (BET) equation (2). Pore size distribution was calculated by Dollimore-Heal (DH) (13, 14) and micropore analysis (MP) (38) methods based on the desorption branch of the isotherms.

FTIR spectroscopy and powder XRD. FTIR spectra were recorded at room temperature on a Digilab FTS4000MXK FTIR spectrophotometer (Randolph) with a mercury-cadmium-telluride (MCT) detector maintained at the temperature of liquid N₂. A total of 144 detector readings were accumulated at a spectral resolution of 2 cm⁻¹. The sample (ca. 8 mg), vacuum dried as described above, was pressed into a 10-mm-diameter pellet.

The crystallinity of the same sample was evaluated by X-ray diffractometry (RINT-2000; Rigaku, Japan) using Cu Kα radiation (voltage, 40 kV; current, 200 mA). Scans were performed from 10° to 80° (2θ value) at a rate of 4° min⁻¹ with a step size of 0.02°.

RESULTS AND DISCUSSION

The ocherous flocs collected for this study consisted predominantly of numerous spirally twisted stalks (Fig. 1A and B) and their associated bean-shaped bacterial cells (Fig. 1B, arrowhead). The twisted stalks consisted of many parallel-bundled fibers (Fig. 1C) that originated from the concave side of the bacterial cell (Fig. 1D). These features are consistent with earlier descriptions of Gallionella ferruginea (21, 25, 52).

An underfocused TEM image of the fiber matrix revealed assembled primary particles of ca. 3 nm in diameter at the fiber edge (Fig. 2A). These features are similar in morphology to the ca. 5-nm spherical clumps of ferrihydrite produced by cultured Gallionella, as observed by TEM imaging (4). The rough and granular surface of the fibers in the STEM/SEI image reflects the disordered assembly of the primary particles (Fig. 2B). Pore size distribution analyses of the fiber surface by the MP method for micropore analysis (pore diameter \(d_p\), <2 nm) and the DH method for mesopore analysis (pore radius \(r_p\), 2 to 50 nm) exhibited a wide distribution of a great number of micropores (mostly \(d_p\) of 1 nm) (Fig. 3A) and mesopores (\(r_p\), <3 nm) (Fig. 3B) in the fiber. Such uneven...
surfaces together with the interfiber spaces (Fig. 2B, arrows) give rise to an extremely large specific surface area (BET surface area, 370 m²/g). Emerson et al. (16) noted that the biogenic iron oxyhydroxides produced as a result of Fe oxidation by iron-oxidizing bacteria are always poorly crystalline forms of ferrihydrite, providing the important characteristics of large surface area, reactive surface properties, and the ability to be readily reduced. Such high porosity and large specific surface area of the stalk fibers could be a significant characteristic when we consider their industrial applications as a functional material.

The degree of crystallinity of the fibers was evaluated by XRD, SAED, and HRTEM. The XRD pattern with two broad peaks (Fig. 4A) and the TEM/SAED pattern with two halo rings corresponding to d-spacing values of 0.26 and 0.15 nm (Fig. 4B, inset) indicate a 2-line ferrihydrite, which is iron oxyhydroxide of a low crystallinity (29, 37). Ferris et al. (20) analyzed *Gallionella*-associated iron oxide precipitates by electron diffraction and found that their matrix gave weak diffuse patterns indicative of a poorly ordered material with very little long-range crystalline structure. Similarly, Søgaard et al. (50) analyzed *G. ferruginea* stalks by SAED and found that the Fe-encrusted fibers were amorphous, while the Fe-precipitated lumps were microcrystalline. On the basis of this analytical data, they considered that after oxidation, the amorphous Fe(III) hydroxides were partly retained in the stalks of the exopolymer and partly released to initiate crystallization as microcrystallites. Their analytical data are consistent with the description by Chan et al. (4), which stated that filaments of *G. ferruginea* stalks consisted of amorphous iron oxyhydroxide. The XRD and TEM/SAED results obtained in our study were consistent with these data. Figure 4C shows the just-focused HRTEM image of a fiber edge which gives an image of an almost homogeneous matrix. The fringes of the nanometer-scale particles similar to those in Fig. 2A were observed in the same area as the underfocused image. The absence of lattice fringes in the highly magnified image (Fig. 4C) and the absence of spots, which would be caused by a crystalline phase, in the FFT pattern (Fig. 4C, inset) apparently indicate that the matrix of primary particles comprising the fiber has an amorphous structure.

As reported in previous EDX analytical data (52), Fe and O were the major elemental constituents of the fibers, and Si and P were minor elements, with an approximate atomic percentage ratio of Fe:Si:P = 79:16:5. As indicated in Table S1 in the supplemental material, the groundwater of the sampling site contains...
Ca, Na, Si, Fe, and Mg (all >10 μg/ml) and Mn and P (<2 μg/ml). Data evidently show that the concentrations of solutes in the groundwater do not account for those of the stalks, suggesting that Fe, Si, and P might be preferentially impregnated into the stalks, regardless of their contents in aquatic environments. To date, many researchers have performed EDX analysis on Gallionella stalks and have detected Fe, O, Si, Al, Ca, Cl, and/or P as the compositional elements, the ratios of which were largely affected by the bacterial states and habitats (5, 6, 24, 27, 32–34, 44, 52). However, all of these earlier papers consistently proved that Fe was the most prevalent, regardless of the environmental habitat of the bacteria. Suzuki et al. (52) showed by electron energy loss spectroscopy that the stalk fibers of Gallionella had a central carbon core of bacterial exopolymers and postulated that aquatic Fe could interact with O at the surface of the carbon core, resulting in deposition of iron oxides at the surface. These results were not inconsistent with the earlier report by Hallberg and Ferris (24) that in minute, flaky Fe precipitates within Gallionella fibers, the Fe/O atomic ratio was nearly 0.67 in individual crystallites, suggesting that iron oxides could interact with O at the surface of the carbon core, resulting in deposition of iron oxides at the surface. These results were not inconsistent with the earlier report by Hallberg and Ferris (24) that Fe, Si, and P are present as Si4O4 and P5O4 tetrahedral units, respectively (11, 12, 36, 43, 45, 46). This information and the current HRTEM and EDX data led us to suspect that the putative four elements were distributed amorphously as these respective units in the primary particles of the fiber. However, how these units and/or individual elements interact with each other in the fiber matrix still remains in question. Thus, we set out to analyze the chemical linkages of Fe, O, Si, and P in the current sample by FTIR spectroscopy. The broad bands near 1,630 and 3,300 cm⁻¹ (Fig. 5A, b and d) are ascribed to O-H bending and stretching vibrations, respectively. The small bands near 3,680 cm⁻¹ (Fig. 5B, e), 3,720 cm⁻¹ (Fig. 5B, f), and 3,740 cm⁻¹ (Fig. 5B, g) are assigned to the O-H stretching vibrations of OH groups attached to P (8, 28), Fe (28), and Si (49, 54, 58, 59), respectively. The band near 1,000 cm⁻¹ is assigned to overlapped bands of Si-O-Fe (7, 48, 49) and P-O-Fe (10, 22) stretching vibrations (Fig. 5A, a). These results indicate that the fibers contain a large amount of adsorbed water and hydroxyl groups, as suggested by Kennedy et al. (32), and that Fe binds not only to O but also to Si and P via O. In addition, the small band near 2,900 cm⁻¹ at the right shoulder of the broad band centered at approximately 3,400 cm⁻¹ (Fig. 5A, c) is assigned to C-H vibrations.

![FIG 5](image-url) (A and B) FTIR spectra of the sample. Band in squared area in panel A is enlarged in panel B. a.u., arbitrary units. (C) Alphabetical indices in panels A and B show vibration modes assigned to wave numbers, respectively, listed in the table. Superscript numbers in parentheses are reference numbers.
stretching vibrations (31, 42), suggesting the presence of organic materials in the fibers, which is consistent with earlier reports (4, 6, 21, 24, 50, 52). Any references to assign the multiple bands between 1,300 and 1,580 cm⁻¹ (Fig. 5A, x) have not yet been found. These results led us to suspect that Fe⁺³+(O, OH)₆, Si⁺⁴+(O, OH)₄, and P⁺⁴+(O, OH)₄ could exist as terminal groups of ionic linkages, probably at the surface of the primary particles, while Fe⁺³+O₆, Si⁺⁴+O₄, and P⁺⁴+O₄ units could connect each other randomly inside the particles. The previous EDX (see Fig. S1 in the supplemental material) and current FTIR showed that Fe, Si, P, and O and their associated linkages evidently existed in the stalks. However, because FTIR is a bulk measurement, the spatial associations of these constituents, for example, with the nanometersized ferrihydrite surface or interiors or secondary phases (e.g., amorphous SiO₂ and/or Fe phosphates) is ambiguous. Therefore, it is still too early to consider that the putative linkages exist uniformly in the entire fiber matrix including the interior.

As was reported earlier, inorganic ligands such as SiO₂ or PO₄ in Fe(III) hydrolysates could interfere with the polymerization and crystallization of Fe oxhydroxide precipitates (9, 11, 46). Furthermore, organic materials are known to similarly affect the crystallization of Fe oxhydroxide precipitates during hydrolysis (17, 39, 40). Although we must be more careful before reaching a significant conclusion about the chemical constitution of the fiber matrix, we still suspect that SiO₂, PO₄, and other minor elements in groundwater together with organic polymers of bacterial origin could greatly influence the construction of the fiber matrix comprising unique amorphous iron oxhydroxides, which are distinct from the spontaneously formed siliceous ferrithydrate found in acid mine drainage (9) and the Si-doped ferrithydrate produced by artificial hydrolysis (49).

Many details remain unsolved in answering the question of whether Si and P interact with previously formed iron oxides, as was postulated by Kennedy et al. (32), or aquatic Fe(II) before oxidation and/or Fe(III) resulting from oxidation. Furthermore, some chemical bonds that clearly account for previously reported forms, FeOOH, α-FeOOH (4, 5, 6, 33), Fe(OH)₃ (20), and Fe₃O₄ (24), will be detected by other techniques. A further study of the interactions of organic molecules with the elements detected in this study will promote our basic understanding of the structural character of Gallionella stalks. We fully agree with the invaluable observation of Emerson et al. (16) that understanding the structural details of these organomineral complexes will present an interesting interdisciplinary challenge for materials scientists, mineralogists, geochemists, and microbiologists.

ACKNOWLEDGMENTS
This study was financially supported by a Special Grant for Education and Research (2008.4-2013.3) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

We are indebted to Tokuro Namba, Graduate School of Environmental Science, Okayama University, for his critical reviewing and valuable suggestions.

REFERENCES