The number of bacterial species estimated to exist on Earth has increased dramatically in recent years. This newly recognized species diversity has raised the possibility that bacterial natural product biosynthetic diversity has also been significantly underestimated by previous culture-based studies. Here, we compare 454-pyrosequenced nonribosomal peptide adenylation domain, type I polyketide ketosynthase domain, and type II polyketide ketosynthase alpha gene fragments amplified from cosmid libraries constructed using DNA isolated from three different arid soils. While 16S rRNA gene sequence analysis indicates these cloned metagenomes contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. When grouped at 85% identity, only 1.5% of the adenylation domain, 1.2% of the ketosynthase, and 9.3% of the ketosynthase alpha sequence clusters contained sequences from all three metagenomes. Although there is unlikely to be a simple correlation between biosynthetic gene sequence diversity and the diversity of metabolites encoded by the gene clusters in which these genes reside, our analysis further suggests that sequences in one soil metagenome are so distantly related to sequences in another metagenome that they are, in many cases, likely to arise from functionally distinct gene clusters. The marked differences observed among collections of biosynthetic genes found in even ecologically similar environments suggest that prokaryotic natural product biosynthesis diversity is, like bacterial species diversity, potentially much larger than appreciated from culture-based studies.

Phylogenetic analyses based on 16S rRNA gene sequences show that environmental samples can contain thousands of unique bacterial species, only a small fraction of which are grown using traditional culturing techniques (27). Contrary to the century-old tenant in microbiology that “everything is everywhere; but the environment selects” (4), recent molecular phylogenetic-based biogeography studies have found that ecologically similar yet geographically distant environments can contain distinct consortia of bacterial species (24, 34, 35). Extrapolations from these and other studies have led to predictions that there may be as many as 10^7 to 10^9 unique bacterial species on Earth (12, 30). As bacteria are considered one of the world’s richest sources of bioactive natural products, such predictions could have profound implications for future drug discovery efforts. However, whether this newly recognized bacterial species diversity corresponds to a modest increase in secondary metabolite biosynthetic diversity or to a radical increase in the number of unexplored biosynthetic systems is currently unknown.

It is possible that there exists a relatively small global collection of secondary metabolite gene clusters that is largely conserved from one location to the next or, conversely, that secondary metabolite gene clusters are to some extent geographically and environmentally constrained, resulting in the presence of largely orthogonal collections of gene clusters in geographically distinct microbiomes. Here we have sought to begin to address this issue by determining whether the collections of biosynthetic genes found in ecologically similar but geographically distinct soil microbiomes differ from sample to sample or whether they are largely conserved across geographic boundaries. The number and diversity of novel natural products that remains to be examined for potentially useful bioactivities is likely to depend heavily on which of these two possibilities is dominant throughout the biosphere.

Secondary metabolite biosynthetic diversity encoded within a soil metagenome is difficult to assess using standard microbiology methods because the majority of environmental bacteria are not readily cultured. Culture-independent or metagenomic methods, which rely on cloning DNA directly from environmental samples, provide a means of exploring secondary metabolism in natural bacterial populations (19). To compare the biosynthetic potentials of different soil microbiomes, environmental DNA (eDNA) extracted directly from three geographically distinct arid soils collected in the American Southwest (the Sonoran Desert of Arizona [AZ], the Anza-Borrego region of the Sonoran Desert of California [AB], and the Great Basin Desert of Utah [UT]) was used to construct three independent eDNA cosmid libraries. Each library contains in excess of 350 gigabases of DNA (~100,000 bacterial genome equivalents) and is predicted to provide sufficient sequence coverage to capture the major constituents of the respective soil metagenome (2, 3, 6, 16, 17, 21, 22). The enormous size of these cloned soil metagenomes makes it difficult to shotgun sequence to a depth that would provide statistically relevant comparisons of differences in secondary metabolite genes. We have therefore compared secondary metabolism in different soils by pyrosequencing PCR amplified fragments of conserved sequences found in nonribosomal peptide synthetase (NRPS), type I polyketide synthase (PKSI), and type II polyketide synthase (PKSII) gene clusters, three of the most common bacterial natural product biosynthetic systems (Fig. 1A).

Received 14 January 2012 Accepted 2 March 2012
Published ahead of print 16 March 2012
Address correspondence to Sean F. Brady, sbrady@rockefeller.edu.
Supplemental material for this article may be found at http://aem.asm.org/.
Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/AEM.00102-12
The phyla appeared in each library. As might be expected for metagenomic libraries constructed from ecologically similar soils, 16S rRNA gene analyses indicate similarities among the three gene sets derived from different microbiomes. KS, ketosynthase; ACP, acyl carrier protein; AT, acyltransferase; C, condensation domain; A or AD, adenylation domain; PCP, peptide carrier protein. (B) Bar graphs show the frequency at which 16S rRNA genes from different microbiomes were recovered from library pools by successive rounds of PCR screening as described below. Individual ketosynthase alpha (KS_A) domains, type I polyketide KS_{AD} domains, type II polyketide KS_{AD} domains, and type II polyketide synthases (PKSII) ketosynthase alpha (KSα) sequences (1, 25, 28). Important features we considered when selecting from the degenerate primers that have appeared in the literature included amplicon length below 1,000 bp, limited homonucleotide stretches in known sequences of the region to be amplified, and robust amplification using standard PCR conditions.

The primers were designed to recognize the conserved regions A3 and A7 in NRPS adenylation domains. Within the bpsA gene from the Amycolopsis baltimorana-derived baltimycin biosynthetic gene cluster, the amplified region corresponds to nucleotides 15217 through 15909 (GenBank accession number Y16952.3). KSα gene fragments (−672 bp) were amplified using primers KSα-F (5′-TSCGTGCTGTTAGYGGATATATG-3′) and KSα-R (5′-TGGGAANCCTGCGGACCGCTG-3′) (25). These primers were designed to amplify the most conserved region of KSα genes. In the Ksα gene from the Streptomyces coelicolor actinorhodin biosynthesis pathway, the amplified region corresponds to nucleotides 720 through 1332 (GenBank accession number X63449.1). KS domain fragments (−760 bp) were amplified using primers degKS2F.i (5′-TCATGGAGGCCCACARCMGIVT-3′) and degKS2R.i (5′-GTTCGCGTCCCCGCTGCTC-3′) (28). These primers were designed to amplify the most conserved regions of PKSI ketosynthase domains, including the active site residues. In the case of the eryAIII gene from erythromycin biosynthesis in Streptomyces erythraeus, this amplicon spans nucleotide 11056 through 11735 (GenBank accession number M63677). The 16S rRNA gene V4 hypervariable region (−207 bp) was amplified using primers 16S-F (5′-AYTGGYDYTAAAGN-3′) and 16S-R (5′-TACNVGGGTATCTAATTCC-3′) (10, 11). Forward and reverse primers incorporated 454-sequencing adapters (forward primer “A adaptor,” 5′-GTTCGGCGTCCCCGCTGCTC-3′; reverse primer “B adaptor,” 5′-CTATTGCGCCTTGGCCAGCGCTC-3′). To allow for sequencing of different genes in the same region of a 454 plate sample, specific tags were added between either the reverse or forward degenerate primer and the 454-adapting sequence.

For AD, KSα, and 16S rRNA genes, amplification reactions were carried out using two distinct PCR conditions in an attempt to amplify the most diverse set of eDNA gene sequences. The first reaction mix (20 μl/reaction) contained 100 ng cosmid DNA, 0.5 μM each primer, 200 μM each deoxynucleoside triphosphate (dNTP), 1× Phusion GC buffer (New England BioLabs), 0.2 U Phusion polymerase (New England BioLabs), and 3% dimethyl sulfoxide.
sulfoxide (DMSO). The second reaction mix contained 1× G buffer (Epicon-
tre), 50 pmol of each primer, 2.5 U Taq polymerase (New England BioLabs),
and 100 ng cosmid DNA. For amplifications with the AD and KSs primers,
the first reaction mix, used a PCR protocol of 30 cycles consisting of 10 s at
98°C, 30 s at 70°C, and 30 s at 72°C, followed by a final extension at 72°C for
5 min. The second reaction mix, used a PCR protocol of 35 cycles consisting
of 1 min at 95°C, 3 min at 72°C, followed by a final extension at 72°C for 5
min. For amplifications with the 16S primers, the first reaction mix used a
PCR protocol of 25 cycles consisting of 10 s at 98°C, 30 s at 55°C, and 30 s at
72°C, followed by an extension at 72°C for 5 min. The second reaction mix
used a PCR protocol of 35 cycles consisting of 40 s at 95°C, 40 s at 5°C, and 40 s
at 72°C, followed by extension step at 72°C for 5 min. While AD, KSs, and 16S
primers worked successfully under multiple PCR conditions, we could only
identify a single condition that worked with the KS domain-specific primers.
PCRs (20 μl) using KS domain-specific primers contained 1× G buffer, 50
pmol of each primer, 2.5 U Taq polymerase, and 100 ng cosmid DNA. The
amplification reactions performed for 35 cycles consisting of 40 s at 95°C, 40
s at 50°C, 75 s at 72°C, followed by a final extension step at 72°C for 5 min.

454 sequencing and data processing. PCR products were run on crys-
tal violet-stained gels, and ampicorns of correct predicted size were gel
purified using Qiagen MinElute columns by following the manufacturer’s
instructions. The purified PCR products were fluorometrically quantified
(PicoGreen Quant-IT; Invitrogen) and analyzed via capillary electropho-
resis (DNA 7500; Agilent Technologies). Each purified amplicon was di-
uted to 10^9 molecules/μl. Amplicorns of the same gene from different
libraries were pooled and used as a template for emulsion PCR (emPCR).
Parallel pyrosequencing (454 GS-FLX Titanium) of beads from these inde-
dependent emPCR reactions was performed according to the manufac-
turer’s protocol and processed as described below. Base calls and quality
scores were extracted using the 454 GS-FLX Titanium shotgun processing
software. Sequences are deposited in the NCBI Sequence Read Archive
(SRA) database under accession number SRP0088112.

The number of sequences carried forward after each processing step is
shown in Table S1 in the supplemental material. Sequences obtained from
454 pyrosequencing (see Table S1, 454 reads) were initially processed and
cleaned using the ribosomal database project (RDP) pyrosequencing pipeline (10). This included removal of the primers, removal of reads less
than 300 bp, removal of reads containing ambiguous calls, and the trim-
ning of the remaining reads to 300 bp out from the forward primer site
(see Table S1, RDPP trim). Potential chimeric sequences were removed using
UCHIME (see Table S1, no chimes) (15). Identical sequences were then
removed (see Table S1, nonredundant). Each set of sequences was then
compared to the appropriate reference sequence database (NRPS-
REF, PKSI-REF, and PKSII-REF, see below), and any reads that did
not align to a reference over at least 90% of the read with an E value
of <10e^-10 were removed (see Table S1, ref-homologs). AD sequences
were found to be much more divergent than KS or KSs sequences, and
therefore an E value cutoff of 10e^-5 was used in AD reference database
searches. For some analyses, redundant sequences removed early on (see
Table S1, nonredundant) were added back to the data set (see Table S1,
ref-hom-redun). The ref-hom-redun sequences were clustered at 97%
identity using USEARCH to compensate for potential sequencing errors
(see Table S1, 97% unique) (14). To search for sequences related to func-
tionally characterized gene clusters, we used unique sequences clustered at
100% identity (ref-homologs).

Reference sequence database preparation for NRPS, PKSI, and
PKSII genes (NRPS-REF, PKSI-REF, and PKSII-REF). To generate a da-
tabase of known AD, KS, and KSs sequences that could be used to clean
our 454 data sets, a primer-based pattern search on NCBI-NR database
was performed with forward degenerate primers. From this search, in
each case, 300 bp out from the site recognized by the forward primer was
cut from the NCBI-NR sequence and this collection of 300-bp fragments
was then used in BLASTX queries against all NCBI-NR protein sequences.
All BLASTX hits meeting the following criteria were collected and used as
reference sequence databases: (i) E value of <10e^-10, (ii) alignment of
greater than 90% of the length of the translated NCBI-NR derived query
sequence, and (iii) greater than 50% identity to the query sequence.

NRPS AD domains, type I polyketide KS domains, and type II
polyketide KSs domains are all distantly related to sequences used outside
secondary metabolism. In an attempt to avoid populating our reference
library with sequences from primary metabolism, annotation data from
any sequence that showed an E value of <10e^-10 and >90% identity
coverage but lower than 50% identity to a query sequence was manually
scrutinized. Among these sequences, only the sequences that were explic-
itly annotated in the NCBI-NR database as nonribosomal peptide adeny-
lation domains, polyketide type I ketosyntheses, or polyketide type II
eketosyntheses were included in our reference sequence databases (NRPS-
REF, PKSI-REF, and PKSII-REF).

16S phylogenetic analysis. 16S rRNA gene hypervariable region
reads were processed as described above with a few modifications: (i)
reads that did not contain both primers were removed, (ii) chimeric
sequences were removed using chimera_bellerophon (MOTHUR) and
UCHIME, and (iii) E. coli 16S rRNA gene sequences were explicitly
removed from the data set (31). Cleaned 16S reads were classified using
RDP classifier. For each 16S data set, a single representative sequence
from each of the clusters that formed when grouped at 97% identity
(see Table S2 in the supplemental material, 97% unique) was used for
RDP-based phylum level classification. The number of sequences car-
rried forward after each processing step is shown in Table S2.

Assignment to similarity-based operational taxonomic units
(OTUs) and sequence type richness estimators. To compute rarefaction
curves and sequence type richness estimation with DOTUR we needed to
generate a multiple sequence alignment of each 454 data set (29). There
were too many sequences to align efficiently using ClustalW. We therefore
elected to initially cluster each group of sequences (see Table S1 in the supplemental
material, ref-hom-redun) at 85% identity using USEARCH. Representative
sequences from each of the resulting clusters were then used to generate
multiple sequence alignment. The alignments of KS and KSs sequences
were carried out using ClustalW, and for the larger AD data sets, the
alignments were carried out using MUSCLE (13). Reference alignments
were then used as templates to finally align all of the cleaned reads (see
Table S1, ref-hom-redun) using the align_seqs module in MOTHUR
(31). Distance matrices were calculated from the resulting alignments
using the dist_seqs module in MOTHUR, and then these matrices were
used as inputs to compute Shannon-Weaver diversity indices, Chaol
richness estimates, and rarefaction curves with DOTUR (29).

Comparative sequence analyses. The ref-hom-redun sequence sets
for individual genes from different libraries were combined and clustered
at 97%, 90%, and 85% sequence identities using USEARCH. The origin of
the sequences in each cluster was recorded, and these data are displayed as
Venn diagrams (see Fig. 3). BioInfoRx Inc.’s Venn diagram web tool was
used for drawing Venn diagrams. The exact number of clades that appears
when sequences from each library are clustered at various percent identi-
cities is shown in Table S4 in the supplemental material. The number of
OTUs generated by DOTUR and USEARCH differ slightly. This is likely
due to the different clustering algorithms used by the two programs.
DOTUR uses distance matrices based on multiple sequence alignments as
a basis for clustering whereas USEARCH uses pairwise alignments and
nearest neighbor joining for clustering. The number of clusters predicted
by these programs can also vary slightly when starting with different-sized
populations of closely related sequences.

Molecular phylogenetic tree construction. The sets of 97% unique
sequences obtained for each gene from all three libraries were pooled and
clustered at 85% sequence identity using USEARCH (14). Representative
sequences from each clade were aligned, and phylogenetic trees were cal-
tulated using the neighbor-joining algorithm of ClustalW (32). Circular
phylogenetic trees were plotted using the interactive Tree of Life (iTOL)
(23). For KSs, all 492 clusters are drawn on the final tree. Representative
sequences from only 500 most-populated clusters were used for the con-
struction of AD and KS trees (see Fig. S1 in the supplemental material).
RESULTS

454 pyrosequencing of cloned AD, KS, and KSα domains. Degenerate primers designed to recognize conserved sequences found in gene clusters encoding nonribosomal peptides, type I polyketides, and type II polyketides were used to PCR amplify secondary metabolite-specific gene sequences from three cloned metagenomes (Fig. 1) (1, 25, 28). The resulting amplicons, corresponding to NRPS adenylation (AD) domain, PKSI ketosynthase (KS) domain, and PKSII ketosynthase alpha (KSα) gene fragments were then pyrosequenced using 454 GS-FLX technology (Fig. 1). In each case, we continued sequencing until Chao1 sequence richness estimates predicted that at least half of the unique genes present within each metagenome had been sequenced (see Discussion below) (Fig. 2A). In total, between 22,000 and 79,000 reads were obtained for each metagenome-specific amplicon (Fig. 2A).

454-pyrosequencing error rates have been reported to range from less than 1% to as high as 4% (20). Studies looking specifically at 454 GS-FLX sequencing technology report error rates below 3%, even over long read lengths (8). We therefore clustered all processed reads at 97% identity to correct for potential sequencing errors and obtain unique sets of nonredundant gene sequences from each metagenome/amplicon pair. This analysis led to the identification of, on average, 13,177 AD, 2,960 KS, and 666 KSα unique sequences per cloned metagenome (Fig. 2A). If pyrosequencing error rates exceed 3%, the true diversity would be lower than that predicted here. At this depth of sequencing, rarefaction curves for both KS and KSα domains appear to be reaching asymptotes (Fig. 2B). For AD domains, which the Shannon diversity index predicts are the most diverse set of sequences, this does not appear to be the case even though we acquired more than 60,000 AD reads per cloned metagenome (Fig. 2). Chao1 sequence richness estimates calculated at a cutoff of 3% predict that each cloned metagenome contains on average 23,884, 4,493, and 1,016 unique AD, KS, and KSα sequences, respectively (7). As stated above, based on these richness estimates, we have sequenced deep enough to identify over 50% of the unique domains that are accessible from each metagenome using this set of degenerate primers.

454 pyrosequencing and comparison of cloned 16S sequences. For each library, the percentage of unique 16S rRNA gene fragments corresponding to different major bacterial phyla was calculated (see Table S3 in the supplemental material) and is shown as bar graphs in Fig. 1B. Although these libraries were constructed from soils collected in geographical distinct locations, they contain very similar distributions of major bacterial phyla. Based on 16S rRNA gene sequences, *Proteobacteria*, *Actinobacteria*, *Verrucomicrobia*, *Acidobacteria*, and *Bacteroidetes* are the most common phyla represented in each library.

Global comparisons of metagenome-derived AD, KS, and KSα amplicons. For comparison purposes, all of the sequences obtained for a given domain were pooled and then clustered based on sequence identity. The resulting clusters were grouped according to whether they contained sequences from one, two, or all three metagenomes. These relationships are depicted as Venn diagrams in Fig. 3. When sequences from all three soils were clustered at 97% identity, almost all of the resulting clusters were populated with sequences from a single metagenome, indicating that these three soils contain essentially orthogonal sets of secondary metabolite biosynthetic gene sequences. Three percent divergence is commonly used to define unique bacterial species in 16S rRNA gene-based molecular phylogenetic analyses; however, for less conserved sequences like secondary metabolite biosynthetic genes, this metric likely has little functional relevance. It would be more informative to group sequences at similarities corresponding to the point at which two gene sequences have a high likelihood of being derived from gene clusters that encode the production of structurally distinct metabolites. Although for many genes there is unlikely to be a simple linear correlation between sequence divergence and differences in the metabolites encoded by the gene clusters in which these genes are associated, molecular phylogenetic comparisons of microbiome-derived gene sets at different identities should be a useful strategy for comparing secondary metabolite genes derived from different microbiomes (Fig. 3). Even when gene sets from the three metagenomes were clustered at identities as low as 90 and 85%, only a small number of the resulting clusters contained sequences from all three metagenomes (Fig. 3). When clustered at 85% identity, only 1.5% of AD, 1.2% of KS, and 9.3% of KSα clusters contained sequences from all three metagenomes. When grouped at 85% identity, 50% of AD, 37% KS, and 17% KSα clusters are populated with a single pyrosequencing read. While many of these likely represent distinct environmental sequences, it is also possible that some sequences are due to undetected chimera events or higher than predicted sequencing error rates. Venn diagrams constructed using
representative sequences from only the 500 most populated AD and KS clades are shown in Fig. 3B. Each of these clades contains more than 20 unique pyrosequencing reads. This subset of clusters shows more extensive metagenome-to-metagenome overlap than the entire population of KS and AD sequences; however, even among these more highly populated clusters we see significant metagenome-specific differences. Although sequence divergence estimates will vary with the length of the sequences being compared as well as the specific region of the gene that is surveyed, the gene fragments examined in this study suggest that these three environments not only contain very few identical sequences but that they actually contain few sequences that are even closely related to each other.

Comparison of eDNA and NCBI-NT database derived sequences. Forward degenerate primers were used in silico to search fully sequenced cultured bacterial genomes deposited in NCBI-NT for AD, KS, and KSα sequences. In total, 636 AD, 1,455 KS, and 180 KSα sequences were found in this search. These sequences were then computationally rescreened using the appropriate reverse degenerate primers. The remaining 334 AD, 1,303 KS, and 79 KSα were used to assess the phylogenetic specificities of each primer set (see Table S5 in the supplemental material). Sequences recovered with the forward primers were also compared in a clustering analysis with the eDNA derived sequences. NCBI-NT sequences were trimmed to include 300 nucleotides out from the position of the primer, and then they were clustered at different identities together with the eDNA sequences we obtained from all three libraries (Table 1). Even when grouped at identities as low as 85%, only a small fraction (<2%) of clades contained both eDNA and NCBI-NT derived sequences. Secondary metabolite gene sequences found in these three metagenomes not only differ from each other, but they also largely differ from genes previously sequenced from cultured bacteria.

AD, KS, and KSα phylogenies. Although the individual soil microbiomes explored in this study contain largely orthogonal sets of biosynthetic gene sequences, genes from these different soil samples do not appear to have radically different evolutionary origins. Clustering KSα sequences from all three metagenomes at 85% identity resulted in 492 unique OTUs. A ClustalW derived phylogenetic tree of a single representative sequence from each OTU is shown in Fig. 3C (23, 32). Environmental DNA derived KSαs fall into clades containing KSα sequences that are known to encode structurally diverse aromatic metabolites, as well as several clades without any functionally characterized KSα sequences (Fig. 3C). Sequences from different metagenomes do not group into metagenome-specific clades but instead distribute throughout the tree, suggesting that KSα sequences from different soils share a set of diverse ancestors. AD and KS sequences were so numerous that even when grouped at a molecular distance of 0.15 it is difficult to display these data as phylogenetic trees. Fig. S1 in the supplemental material contains phylogenetic trees of the 500 most populated AD and KS OTUs. AD and KS sequences show the same general trend as KSα sequences, where sequences from different metag-

FIG 3 Comparison of secondary metabolite gene sequences found in three cloned metagenomes. (A) Sequences from all three metagenomes were clustered at various identities, and Venn diagrams were then made to show the percentage of clades containing sequences from each cloned metagenome. Venn diagrams are drawn to scale whenever possible. (B) Even when clustered at 85% identity, a large number of AD and KS clades are sparsely populated. Venn diagrams representing the clustering analysis of only the top 500 most populated AD and KS are shown. Each of these clades contains >20 unique pyrosequencing reads. (C) KSα phylogenetic tree. Functionally characterized KSα sequences (pink) and representative sequences from each OTU that formed when eDNA sequences clustered at 85% identity were aligned using ClustalW and plotted with iTOL. Branches are color coded according to the soil sample that had the most unique sequences in that branch. The KSα gene from resistomycin biosynthesis was used to root the tree. A key advantage of using large libraries rather than crude eDNA to compare microbiomes is that gene clusters associated with novel biosynthetic genes can be recovered and functionally studied. Marked in purple are KSα sequences associated with eDNA-derived gene clusters that have yielded novel secondary metabolites.
enomes largely distribute uniformly throughout the combined phylogenetic trees.

DISCUSSION

When the degenerate primers used in this study were computationally screened against the NCBI-NT database for AD, KS, and KSo genes, approximately two-thirds of the AD and KS sequences and all of the KSo sequences we identified are from Actinobacteria. The remaining AD and KS sequences are from Proteobacteria, in particular, Pseudomonas and Burkholderia spp. This coincides well with the sources of the deposited sequences encoding these three gene families. Approximately 50% of the AD and KS sequences in the UniProt database are from Actinobacteria, with Proteobacteria being the next most common source (26), and the vast majority of deposited KSo sequences are from Actinobacteria. Even though amplification bias introduced by the degenerate primers has undoubtedly led us to underestimate the true sequence diversity present in each metagenome, the set of eDNA-derived gene sequences amplified by these primers should be representative of the genetic loci encoding secondary metabolism in each soil sample and therefore permit useful comparisons of biosynthetic capacities of these metagenomes.

Although 16S rRNA gene sequence analysis (Fig. 1B; see also Table S3 in the supplemental material) indicates that the three cloned metagenomes analyzed in this study contain DNA from similar distributions of major bacterial phyla, we found that they contain almost completely distinct collections of secondary metabolite biosynthetic gene sequences. Soil-to-soil differences seen in secondary metabolite gene sequences do not appear to be artifacts of the sequencing method, the result of generic variations in DNA sequence makeup such as GC content, or due to very high natural polymorphism rates, as when 16S amplicons from these three metagenomes are clustered in the same manner as the biosynthetic genes, they show significantly higher sample-to-sample overlap at this same range of identities (Fig. 3). In fact, the observed sample-to-sample species overlap of 5 to 10% correlates very well with species overlaps that have been reported in other 16S-based analyses of distantly sampled soils (18).

Correlating the observed sequence differences with differences found in the actual secondary metabolites encoded by different metagenomes is complicated by a number of factors, including variations in the rate of evolution of different genes, horizontal gene transfer between bacteria, and the possibility of convergent evolution. In spite of these potential complications, the divergence of functionally characterized KSo gene sequences has been observed to correlate quite well with the production of different structural families by the PKSII gene clusters in which these genes reside, with closely related sequences involved in the biosynthesis of related polyketides and distantly related sequences encoding structurally distinct polyketides (16, 25). While not perfect, the

![Figure 4](http://aem.asm.org/)

Figure 4 Relationship between KSo sequence identity and gene cluster function. (A) The number of distinct groups formed when functionally characterized KSo sequences are clustered at different percent identities is shown. On average, functionally characterized KSo gene sequences (50 in total) that are known to be involved in the biosynthesis of structurally distinct metabolites do not group together when clustered at above 80 to 85% identity. When clustered below 85% identity, this correlation between KSo sequence divergence and small molecule structural divergence is no longer observed. Clustering was carried out using 300-bp KSo gene fragments corresponding to the amplicons that would be produced by the KSo degenerate primers used to access metagenomic sequences. (B) Metagenomic sequences that clustered with functionally characterized KSo genes at 85% identity are shown. A representative eDNA clone containing a KSo gene from each clade was recovered and sequenced. In each case, these clones closely resembled in gene identity, gene complement, and gene organization in the functional characterized gene cluster. The percent identity between KSo genes is shown. Genes are color coded according to the predicted enzymatic function of their products. Red, minimal PKS; blue, regulation and resistance; orange, polyketide biosynthesis; pink, starter biosynthesis; green, sugar biosynthesis; gray, unknown pathway/unrelated enzymes.
inverse relationship seen between KSo sequence identity and natural product structural diversity is quite robust for functionally characterized KSo gene sequences (Fig. 4A). Although there are outliers to this general trend (37) the functional divergence of characterized PKSII gene clusters correlates well with the divergence of KSo gene sequences by 10 to 15% in identity (Fig. 4A). To see if this observation extended into our metagenomic data set, we recovered and sequenced cosmid clones containing KSo genes that were both closely related (>85% identity) and distantly related (<85% identity) to KSo genes found in functionally characterized gene clusters. In each case where we recovered a cosmid containing a KSo gene that showed high identity (>85%) to a functionally characterized sequence, we found these clones to contain gene clusters that closely resemble the clusters associated with the previously characterized KSo gene in this clade (Fig. 4B). On the other hand, when we examined cDNA clones with KSo genes that diverged by more than 15% from functionally characterized KSo genes, we did not identify any sequences that closely resembled these functionally characterized gene clusters in gene sequence, gene content, or gene organization (see Fig. S2 in the supplemental material).

Based on the observed correlation between sequence and small molecule diversity, clustering KSo sequences at 85% identity may provide a means of estimating the natural product biosynthesis potential associated with different collections of KSo gene sequences, much in the same way that the clustering 16S sequences at 97% identity is used to gain insights into the species composition of different environmental samples. Based on this metric, the clustering of KSo sequences from a single metagenome at 85% identity could provide a rough estimate of the number of different aromatic polyketides a metagenome might encode, whereas the Venn diagram describing the composition of KSo clades observed when sequences from different metagenomes are clustered together at this same identity (Fig. 3) would represent the relationship between the different collections of type II polyketides encoded by these metagenomes. The 236, 294, and 186 distinct clades (see Table S4 in the supplemental material) observed when AB, AZ, and UT KSo gene sequences were clustered at 85% iden-
tity, respectively, suggest that soil metagenomes might encode hundreds of structurally distinct aromatic polyketides each, and the 85% identity Venn diagram further suggests that (i) approximately 10% of the metabolites could be common to all three metagenomes (which is represented by the intersection of the three samples in the Venn diagram), (ii) another 5 to 10% could be shared by any two metagenomes, and (iii) the remainder could be specific to an individual metagenome.

Correlations between sequence divergence and gene cluster function for KS and AD domains are complicated by the fact that multiple KS and AD domains often appear in a single biosynthetic gene cluster. Therefore, even though sequence type richness and diversity estimates (Fig. 2A) indicate environmental KS and AD sequences are more divergent and numerous than KS or AD sequences, we cannot directly correlate these differences to global differences in the natural product structural diversity a metagenome might encode. Although it is not possible to predict differences in the structures encoded by these metagenomes, a comparison of our cDNA-derived AD and KS sequences to the collection of corresponding domain sequences found in individual functionally characterized PKS and NRPS gene clusters suggests significant functional differences in the three soil metagenomes (Fig. 5). Domains from some functionally characterized gene clusters only have relatives showing high sequence identity (>75%) in one library (i.e., putisolvin, pyoverdine, mycinamucin, rifamycin, aurafuran, triostin A, etc.), others have relatives in two of the three libraries (i.e., dihydrochalconmycin, bacillicibactin, A47934, α-lipomycin, epothilone, etc.), and others have relatives in all three libraries (i.e., balhimycin, chloroeremomycin, tetrocarcin, etc.).

Soils contain highly diverse collections of bacteria making them very attractive starting points for both culture-dependent and culture-independent small molecule discovery efforts. We chose to investigate secondary metabolism in geographically distinct yet ecologically similar soils based on the belief that ecologically similar soils would have the highest likelihood of containing related sets of biosynthetic gene sequences. We found, however, that even metagenomes from ecologically similar environments with similar phylum-level 16S rRNA gene distributions (Fig. 1B and 3) can contain almost completely distinct collections of biosynthetic gene sequences. This is likely reflective of the fact that natural product biosynthesis gene content can differ not only between species but also between strains of the same species. In those cases where, based on studies from cultured bacteria, it is possible to speculate about the relationship between gene sequence diversity and secondary metabolite structural diversity, our data suggest that sequences in one soil metagenome are so distantly related to sequences in another metagenome that in most cases they are unlikely to be found in gene clusters that encode the same metabolites. If this holds true for other soil types, the unexplored bacterial biosynthetic diversity present in the Earth’s biosphere is, like bacterial species diversity, potentially much larger than predicted previously from fermentation-based analyses (9, 33).

ACKNOWLEDGMENT

This work was supported by NIH grant number GM077516. S.F.B. is an HHMI Early Career Scientist.

REFERENCES