ENGINEERING PLATFORMS FOR THE DIRECTED EVOLUTION OF LACCASE FROM *Pycnoporus cinnabarinus*.

S. Camarero1,2, I. Pardo2, A.I. Cañas1,2, P. Molina1,2, E. Record3, A.T. Martínez2, M.J. Martínez2 & M. Alcalde1*

1Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049, Madrid, Spain.

2Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain.

3UMR 1163 INRA de Biotechnologie des Champignons Filamenteux, IFR86-BAIM, Universités de Provence et de la Méditerranée, ESIL, 163 Ave. de Luminy, Case Postale 925, 13288 Marseille Cedex 09, France.

*Corresponding author: Miguel Alcalde, Department of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, 28049 Madrid, Spain. Phone: +34 915855479, fax: +34 915854760; malcalde@icp.csic.es.

Running title: Ligninolytic laccase engineered by directed evolution.
While the *Pycnoporus cinnabarinus* Laccase (PcL) is one of the most promising high redox potential enzymes for environmental biocatalysis, its practical use has to date remained limited due to the lack of directed evolution platforms with which to improve its features. Here, we describe the construction of a PcL fusion gene and the optimization of conditions to induce its functional expression in *Saccharomyces cerevisiae*, facilitating its directed evolution and semi-rational engineering. The native PcL signal peptide was replaced by the α-factor prepro-leader and this construct was subjected to six rounds of evolution coupled to a multi-screening assay based on the oxidation of natural and synthetic redox-mediators at more neutral pHs. The laccase total activity was enhanced 8000-fold: the evolved α-factor prepro-leader improved secretion levels 40-fold and several mutations in mature laccase provided a 13.7-fold increase in k_{cat}. Whilst the pH activity profile was shifted to more neutral values, the thermostability and the broad substrate specificity of PcL were retained. Evolved variants were highly secreted by *Aspergillus niger* (~23 mg/L) which addresses the potential use of this combined-expression system for protein engineering. The mapping of mutations onto the PcL crystal structure shed new light on the oxidation of phenolic and non-phenolic substrates. Furthermore, some mutations arising in the evolved prepro-leader highlighted its potential for heterologous expression of fungal laccases in yeast.
INTRODUCTION

Fungal laccases (EC 1.10.3.2) belong to the widely distributed family of blue-multicopper oxidases and they participate in multiple processes ranging from fungal morphogenesis to lignification/deslignification (44). The potential applications of these enzymes are enormous due to their oxidative versatility and low catalytic requirements: they use oxygen from the air and release water as the sole by-product (66). Indeed, their ability to catalyze both polymerization and degradation processes make them suitable candidates as green biocatalysts in several sectors of industry, including textile and food industries, bioremediation and forestry (wood and pulp) (53,63). Recent findings have also highlighted the potential of fungal laccases to be used for improving the conversion of plant biomass in future integrated lignocellulose biorefinaries (16), in organic synthesis (32,52,64) and bioelectrocatalysis (58).

The catalytic mechanism of these generalists enzymes is governed by four copper atoms, one located at the T1 site at which the reducing substrate binds, and the remaining three clustered at a trinuclear copper site where molecular oxygen is reduced to water (45). Laccases produced by the basidiomycetes white rot fungi –involved in lignin biodegradation– generally exhibit a higher redox potential at the T1 site (close to +800 mV), which broadens the range of possible substrates to be oxidized by the enzyme (1). Moreover, in the presence of natural or synthetic redox-mediators, laccase can transform compounds with higher redox potentials than the laccase itself, as well as complex polymers (lignin, starch, cellulose), circumventing steric hindrance.
difficulties (8,30,40). Among high redox potential laccases (HRPLs), the laccase from *Pycnoporus cinnabarinus* (PcL) shows particularly interesting biochemical characteristics in terms of stability and turnover rates for natural and synthetic substrates (36,67). Indeed, the last decade has seen exhaustive studies about the potential application of PcL in the delignification of paper pulps, pitch control, food industry, dye decolorization or degradation of PAHs (14,15,24,25,29,33,57). Optimization of PcL production achieved the highest expression levels yet reported for any HRPL (over 1 g/L from selected fungal monokaryotic strains and up to 100 mg/L from heterologous expression in *Aspergillus* sp.) (4,26,37,51). Besides, the PcL has been crystalized (5). Together these features provide significant opportunities for PcL engineering. However, several bottlenecks are encountered when tailoring basidiomycete laccases by directed evolution, due to poor functional expression in the preferred evolutionary host of eukaryotic proteins (*Saccharomyces cerevisiae*) and the lack of suitable screening assays based on natural laccase substrates. As such, the development of new tools for HRPL design is crucial for further advances in this field (3,6,69).

We recently reported the engineering of a HRPL from the basidiomycete PM1 using molecular evolution and rational approaches, (41). Here, we describe a directed evolution platform for the future guidance of PcL and other HRPLs towards possible different fates (*e.g.* from laccase chimeragenesis to increasing laccase alkalophilicity or substrate specificity onto certain compounds). The native signal
sequence of PcL was replaced by the prepro-leader of the α-factor mating pheromone from *Saccharomyces cerevisiae* and the α-PcL fusion gene was subjected to six rounds of evolution. This process exploited the eukaryotic machinery of *S. cerevisiae*, both to functionally express laccase and to recreate diversity via *in vivo* DNA recombination. A multi-screening assay based on the oxidation of natural and artificial substrates was validated so as not to limit the development of the enzyme towards dependence on a specific substrate. This strategy was combined with searches for active mutants at more neutral pHs. The mutations identified were mapped and discussed in relation to the newly described PcL crystal structure.

MATERIAL AND METHODS

Reagents and Enzymes. The pGEM-T vector containing native PcL cDNA (lac 1 from *P. cinnabarinus* I-937, Gen Bank accession nº: AF170093) was provided by Prof. E. Record (INRA, Marseille, France). ABTS (2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)), DMP (2, 6 dimethoxyphenol), Taq polymerase and the *S. cerevisiae* transformation kit were all purchased from Sigma-Aldrich (Madrid, Spain). The *E. coli* XL2-blue competent cells and the Genemorph I and II Random mutagenesis kits were obtained from Stratagene (La Jolla, CA, USA). The protease deficient *S. cerevisiae* strain BJ5465 was bought from LGCPromochem (Barcelona, Spain). The uracil independent and ampicillin resistance shuttle vector pJRoC30 was kindly donated by
Novozymes, and the pGAPZα vector containing the α-factor preproleader was from Invitrogen (USA). The Zymoprep yeast plasmid miniprep kit, Zymoclean gel DNA recovery kit, and the DNA clean and concentrator TM-5 kit were all obtained from Zymo Research (Orange, CA). NucleoSpin Plasmid kit was purchased from Macherey-Nagel (Germany) and the restriction enzymes BamHI and Xhol were from New England Biolabs (Hertfordshire, UK). All chemicals were of reagent-grade purity.

Culture Media. Minimal medium contained 100 mL 6.7% sterile yeast nitrogen base, 100 mL 19.2 g/L sterile yeast synthetic drop-out medium supplement without uracil, 100 mL sterile 20% raffinose, 700 mL sddH2O and 1 mL 25 g/L chloramphenicol. YP medium contained 10 g yeast extract, 20 g peptone and ddH2O to 650 mL. Expression medium contained 720 mL YP, 67 ml 1 M KH2PO4 pH 6.0 buffer, 111 mL 20% galactose, 2 mM CuSO4, 25 g/L ethanol, 1 ml 25 g/L chloramphenicol and ddH2O to 1000 mL. The YPD solution contained 10 g yeast extract, 20 g peptone, 100 mL 20% sterile glucose, 1 ml 25 g/L chloramphenicol and ddH2O to 1000 mL. SC drop-out plates contained 100 mL 6.7% sterile yeast nitrogen base, 100 mL 19.2 g/L sterile yeast synthetic drop-out medium supplement without uracil, 20 g bacto agar, 100 mL 20% sterile glucose, 1 mL 25 g/L chloramphenicol and ddH2O to 1000 ml.

Construction of α-PcL. The pGEM-T vector containing the PcL cDNA was used as a template to amplify PcL using the primers: NEcoRI-sense (5’-cgGAATTCgccatagggcctgtgg cgg-3’) and CNotI-antisense (5’-
aaggaaaaaGCGGCGGCTcagaggtcgtgggtcaagtgc-3'), which included targets for EcoRI and NotI (in capital letters) and the optimized stop codon for *Pichia pastoris*. The PcL fragment generated lacked its natural signal peptide, which was replaced by the signal leader of the α-factor prepro-leader, resulting in detectable laccase secretion. The pGAPZα vector (Invitrogen) containing the α-factor prepro-leader was linearized with EcoRI and NotI. The amplified PcL fragment was digested with EcoRI and NotI and cloned into the linearized pGAPZα, giving rise to pGAPZα-PcL. This pGAPZα-PcL was used to amplify the fusion gene α-PcL using the following primers: NpJGglII sense (5´-gaAGATCTatgagatttccttcaatttttactgc-3´) and CNotI antisense (5´-aaggaaaaaGCGGCGGCTcagaggtcgtgggtcaagtgc-3´), which included the BglII site (in capital letters – compatible with *BamH*I) and the NotI site, respectively. The resulting fragment was digested with BglII and NotI. The episomal shuttle vector pJRoC30 was digested with *BamH*I and XhoI, and α-PcL was ligated with the vector to produce the pJRoC30-α-PcL construct. PCR reactions were performed in a final volume of 50 µl containing 400 nM of each primer, 25 ng of template, dNTPs (0.25 mM each), 4 mM MgCl₂, 5 µL Taq polymerase buffer and 2.5 Units of Taq polymerase. The PCR cycles followed were: 94 °C for 5 min, 55 °C for 5 min, 72 °C for 5 min (1 cycle); 95 °C for 0.35 min, 50 °C for 2 min, 72 °C for 4 min (25 cycles); and 72 °C for 10 min (1 cycle).

Laboratory Evolution. For each generation, PCR fragments were cleaned and concentrated, loaded onto a low melting point preparative agarose gel and purified using the Zymoclean gel DNA recovery kit.
The PCR products were cloned under the control of the Gal 1 promoter of the expression shuttle vector pJRoC30, which was linearized with XhoI and BamHI. The linearized vector was concentrated and purified as described above for the PCR fragments.

First Generation: mutagenic PCR. Two libraries (1000 mutants each) with different mutation rates were generated by mutagenic PCR with Mutazyme II DNA polymerase, using α-PcL as template. The first mutagenic library was constructed with a mutation rate of between 0 and 4.5 mutations per 1000 bp, and the second with a rate of between 4.5 and 9 mutations per 1000 bp. Error-prone PCR was carried out in a gradient thermocycler (Mycycler, BioRad, US) in a final volume of 50 µL, containing: 185 nM of each primer, 4.65 µg or 2 µg of template for low and medium mutation rate libraries respectively, dNTPs (0.2 mM each), 3% dimethyl sulfoxide (DMSO) and 2.5 Units of Mutazyme II DNA polymerase. PCR reactions were performed as follows: 95 °C for 2 min (1 cycle); 94 °C for 0.45 min, 53 °C for 0.45 min, 74 °C for 3 min (28 cycles) and 74 °C for 10 min (1 cycle). The primers used for amplification were: RMLN sense (5´-CCTCTATACTTTAACGTCAAGG-3´ which binds to bp 160-180 of pJRoC30-αPcL) and RMLC antisense (5´-GGGAGGGCGTGAATGTAAGC-3´, which binds to bp 2031-2050 of pJRoC30-αPcL). To promote in vivo ligation, overhangs were designed of 40 and 66 bp homologous to the linear vector. The PCR products (400 ng) were mixed with the linearized vector (100 ng) and transformed into competent cells using the yeast transformation kit (Sigma). Transformed cells were plated on SC drop-out plates and incubated for 3 days at 30
°C. Colonies containing the whole autonomously replicating vector were selected and screened. This protocol was applied for each round of evolution.

Second Generation: mutagenic PCR + in vivo DNA shuffling. The best mutants from the first generation (1D12, 3D3, 5F7, 3G10) were subjected to Taq/MnCl\(_2\) amplification and they were recombined by in vivo DNA shuffling (~2000 clones). PCR amplifications were prepared in a final volume of 50 µL containing 90 nM of each primer (RMLN and RMLC), 4.6 ng of the mutant template, 0.3 mM dNTPs (0.075 mM each), 3% DMSO, 1.5 mM MgCl\(_2\), 0.01 mM MnCl\(_2\) and 2.5 Units of Taq polymerase. The PCR reactions and the primers used were the same as in the previous generation. Mutated PCR products were mixed in equimolar amounts and transformed into *S. cerevisiae* with the linearized vector (ratio PCR products: vector = 4:1).

Third Generation: mutagenic PCR + in vivo DNA shuffling. The best mutants from the 2\(^{nd}\) generation (10A7, 19C8, 20C7, 1F10, 1C9 and 2D8) were submitted to Taq/MnCl\(_2\) amplification and recombined by in vivo DNA shuffling (2000 clones), as described for the second generation.

Fourth Generation: Mutational exchange by in vivo overlap extension (IVOE). Mutational exchange was carried out using the 7A9 mutant from the 3\(^{rd}\) cycle and evolved PM1L (41) as templates. Mutations were introduced by site-directed mutagenesis/recombination by IVOE (3). Mutations R[α2]S, A[α9]D, A240P and P394H were introduced by mutational exchange between both laccase scaffolds. PCR reactions
were prepared in a final volume of 50 µL containing: 0.25 µM of each primer, 100 ng mutant template (7A9 or evolved PM1L), 1 mM dNTPs (0.25 mM each), 3% DMSO and 2.5 Units of Pfu Ultra DNA polymerase. The PCR reactions were performed as follows: 95 °C for 2 min (1 cycle); 94 °C for 0.45 min, 55 °C for 0.45 min, 74 °C for 2 min (28 cycles) and 74 °C for 10 min (1 cycle).

P394H mutant: The primers for PCR 1 were; RMLN and 3CP484HREV (5´- gcaagtggaggggtgGTGgaagccgggggcggagg-3´, which binds to bp 1639-1678 of pJRoC30-αPM1). The primers for PCR 2 were; 3CP484HFOR (5´- cctccgccgccccgctttcCAACCacccccctcactgc-3´, which binds to bp 1639-1678 of pJRoC30-αPM1) and RMLC.

A[α9]D mutant: The primers for PCR 1 were; RMLN-2 (5´- ggtattactcagcagc-3´, which binds to bp 5-24 of pJRoC30-αPM1) and 1C-REVDI (5´-gaggatgtcgaataaaATCacagccatgaaaaatggagg-3, which binds to bp 219-257 of pJRoC30-αPM1). The primers for PCR 2 were; 1C-FORDI (5´-cctccatatgtgatGATtactgctgcacactgc-3´, which binds to bp 219-257 of pJRoC30-αPM1) and RMLC.

Site directed recombination library R[α2]S, A240P: the primers for PCR 1 were: RMLN and 3SA240P antisense (5´- gcagcaggtagtagctcgcGeAGGaaaaatctgattgaaatc-3´, which binds to bp 195-235 of PjRoC30-αPcL). The primers for PCR 2 were; 2SPREAL sense (5´-ggatccataagatctatgAGTtttccttcaattttactgc-3´, which binds to bp 1182-1224 of PjRoC30-αPcL) and RMLC antisense. ~400 clones were explored.
Fifth Generation: mutagenic PCR. The 7A9 mutant was subjected to mutagenic PCR with Mutazyme II DNA polymerase (~1200 clones), using the same conditions described for the construction of the medium mutation rate library of the 1st generation.

Sixth Generation: in vivo DNA shuffling and backcrossing recombination; mutagenic PCR. Two different libraries were prepared in this generation. Library 1 was built by in vivo DNA shuffling of the 7 best mutants from the 5th generation (1H3, 6A10, 12B4, 3B7, 9E2, 7F11, 8B9) and with the 5D3 mutant from the 3rd generation for backcrossing. The mutants were amplified by PCR in a final volume of 50 µL containing 0.25 mM of each primer (RMLN and RMLC), 100 ng of each mutant template, 1 mM dNTPs (0.25 mM each), 3% DMSO and 2.5 units of Pfu Ultra DNA polymerase. PCR reactions were performed as follows: 95 °C for 2 min (1 cycle); 94 °C for 0.45 min, 55 °C for 0.45 min, 74 °C for 2 min (28 cycles) and 74 °C for 10 min (1 cycle). The amplified products were then co-transformed (100 ng of each of the 8 mutants) with the linearized plasmid (200 ng) using the yeast transformation kit (Sigma). Library 2 was built by error-prone PCR using Taq/MnCl$_2$ and the 1H3 mutant as the parental type. The PCR products (400 ng) were mixed with the linearized vector in a 4:1 ratio and transformed into competent cells using the yeast transformation kit (Sigma).

Engineering α*-PcL and α-3PO fusion genes. Two fusion genes were constructed by using In Vivo Overlap Extension (IVOE, (3)). i) α*-PcL: this fusion gene comprised the evolved alpha-factor prepro-leader

plus the native PcL; ii) α-3PO: this fusion gene comprised the native
(non-evolved) alpha-factor prepro-leader plus the ultimate evolved
mature PcL (3PO laccase) harbouring C117C, N208S, L279L, R280H,
N331D, D341N, P394H, A410A and L457L.

α*-PcL fusion: The primers for PCR 1 were RMLN and alpha-rev
(5’GCATTGGTAAGGGTACAGGTCC3’ that binds to bp 5’- 550-521 -3’ of
pJRoC30-α*-3PO). The primers for PCR 2 were PcL-dir (5’
AATTCGCCATAGGGCTTG3’ that binds to bp 5’-477-499-3’ of
pJRoC30-α-PcL) and RMLC. The products from PCR 1 and PCR 2 have
overhangs with homologous regions of 44 bp between each other, and of
40 bp and 66 bp with the linearised vector for in vivo cloning.

α-3PO fusion: The primers for PCR 1 were RMLN and alpha-rev
(5’GCATTGGTAAGGGTACAGGTCC3’ that binds to bp 5’- 550-521 -3’ of
pJRoC30-α-PcL). The primers for PCR 2 were PcL-dir (5’
AATTCGCCATAGGGCTTG3’ that binds to bp 5’-501-522-3’ of
pJRoC30-α*-3PO) and RMLC. The products from PCR 1 and PCR 2
have overhangs with homologous regions of 44 bp between each other,
and of 40 bp and 66 bp with the linearised vector for in vivo cloning.

For both fusions, the linearised plasmid (100 ng) was mixed with
products from PCR1 and PCR 2 (400 ng each) and transformed into
competent S. cerevisiae cells. Individual clones were picked and
cultured in 96-well plates (GreinerBio-One, Germany) containing 50 μL
of minimal medium per well and subjected to the screening procedure
described below. Positive clones were re-screened (see below), the in vivo
repaired plasmid was recovered and the fusion genes were confirmed by DNA sequencing.

High-throughput (HTP) multi-screening.

General aspects: In the first cycles of evolution, the low secretion levels required performing screenings in liquid format after five days of induction. From the 3rd cycle onwards, expression was strong enough to reduce protein induction to 24 h. It is worth noting that in the first rounds of evolution, screening in end-point mode was required after incubating the supernatants for 24 h in the presence of the substrates. In the last cycles, the improvements were assessed in a few minutes in kinetic mode, mainly due to the increases in expression/activity.

HTP-assay: Individual clones were selected and cultured in 96-well plates (Sero-well, Staffordshire, UK) containing 50 μL minimal medium per well. In each plate, column number 6 was inoculated with the parental type and one well (H1-control) was not inoculated. The plates were sealed to prevent evaporation and incubated at 30 °C, 225 RPM and 80% relative humidity in a humidity shaker (Minitron-INFORS, Biogen, Spain). After 48 h, 160 μL of expression medium was added to each well, and the plates were incubated at 20°C for 5 days in the first two generations and for 24 h in subsequent generations. The plates (master plates) were centrifuged (Eppendorf 5810R centrifuge, Germany) for 5 min at 3000 x g at 4 °C and 20 μL of the supernatant was transferred from the master plate onto three replica plates with the help of a robot (Liquid Handler Quadra 96-320, Tomtec, Hamden, CT, USA). The first replica plate was filled with 180 μL of 100 mM sodium...
acetate buffer [pH 5.0] containing 3 mM ABTS. The second replica plate was filled with 180 μL of 100 mM sodium acetate buffer [pH 5.0] containing 3 mM DMP. The third replica plate was filled with 180 μL of 100 mM sodium acetate buffer [pH 5.0] containing 250 μM sinapic acid. The plates were briefly stirred and the absorption at 418 nm (ε_{ABTS}^{••}=36,000 M⁻¹ cm⁻¹), 469 nm (ε_{DMP}= 27500 M⁻¹ cm⁻¹) and 512 nm (ε_{SA}= 14065 M⁻¹ cm⁻¹) was recorded in a plate reader (SPECTRAMax Plus 384, Molecular Devices, Sunnyvale, CA). The plates were incubated at room temperature in darkness until the color developed and the absorption was then re-measured. Relative activities were calculated from the difference in absorption over time, and that of the initial measurement was normalized against the parental type in the corresponding plate. The coefficients of variance (CV) for the screening assays were adjusted throughout the evolution process (resulting in CVs below 11% from the third round of evolution onward).

First re-screening: Aliquots (5 μL) of the best clones were removed from the master plates to inoculate 50 μL of minimal media in new 96-well plates. Columns 1 and 12 (rows A and H) were not used to prevent the appearance of false positives. After a 24 h incubation at 30 °C and 225 RPM, 5 μL of the growth medium was transferred to the adjacent well and incubated for a further 24 h. Finally, 160 μL of expression medium was added and the plates were incubated for 24 h at 20°C. Accordingly, each mutant was grown in 4 wells. Parental types were subjected to the same procedure (lane D, wells 7-11). Finally, the plates were assessed using the same screening protocols as described above.
Second re-screening: An aliquot from the wells with the best clones from the first re-screening was inoculated in 3 mL of YPD and incubated at 30 °C for 24 h at 225 RPM. The plasmids from these cultures were extracted (Zymoprep yeast plasmid miniprep kit, Zymo Research) and as the product of the zymoprep was very impure, and the concentration of extracted DNA very low, the shuttle vectors were transformed into super-competent *E. coli* cells (XL2-Blue, Stratagene) and plated onto LB-amp plates. Single colonies were selected and used to inoculate 5 mL LB-amp media and grown overnight at 37 °C at 225 RPM, after which the plasmids were extracted (NucleoSpin® Plasmid kit, Macherey-Nagel, Germany). *S. cerevisiae* was transformed with plasmids from the best mutants and also with the parental type. Five colonies of each mutant were selected and screened as described above.

Production and purification of PcL variants.

Production of laccases in *S. cerevisiae*: A single colony from the *S. cerevisiae* clone containing the parental or mutant laccase genes was selected from an SC drop-out plate, inoculated in 3 ml of minimal medium and incubated for 48 h at 30°C and 225 rpm (Micromagmix shaker, Ovan, Spain). An aliquot of the cells was removed and inoculated in a final volume of 50 ml of minimal medium in a 500 ml flask (optical density, OD$_{600}$=0.25). The cells were incubated for two complete growth phases (6 to 8 h). Thereafter, 250 ml of expression medium was inoculated with the 50 ml preculture in a 1 L flask (OD$_{600}$=0.1). After incubating for 120 h at 20 °C and 225 rpm (laccase activity was maximal; OD$_{600}$=25-30), the cells were separated by
centrifugation for 20 min at 3000 g (4°C) and the supernatant was
double-filtered (using both glass membrane and a nitrocellulose
membrane of 0.45 μm pore size).

Laccase Purification: The crude extract was first concentrated and
dialyzed in 20 mM Tris-HCl buffer [pH 7.4] by tangential ultrafiltration
through a 10 kDa pore-size membrane (Minisette, Filtron) using a
peristaltic pump (Masterflex easy-load, Cole-Parmer). The concentrate
was then precipitation with ammonium sulfate at 65 % and after
centrifugation, the supernatant was dialyzed and concentrated by
pressure ultrafiltration through a 10 kDa pore-size membrane (Amicon,
Millipore). The sample was filtered and loaded onto a weak anionic
exchange column (HiTraP Q FF, Amersham Bioscience) pre-equilibrated
with Tris-HCl buffer and coupled to an ÄKTA purifier system (GE
Healthcare). The proteins were eluted with a linear gradient from 0 to 1
M of NaCl, in two phases, at a flow rate of 1 mL/min: from 0 to 50 %
over 75 min and from 50 to 100 % over 15 min. Fractions with laccase
activity were pooled, concentrated, dialyzed against Tris-HCl buffer and
loaded onto the HPLC coupled with a high resolution, strong anionic
exchange column (MonoQ HR 5/5, Amersham Bioscience) that was pre-
equilibrated with Tris-HCl buffer. The proteins were eluted with a linear
gradient of 0 to 1 M NaCl at a flow rate of 1 mL/min in two phases:
from 0 to 25 % in 25 min and from 25 to 100 % in 1 min. Fractions with
laccase activity were again pooled, dialyzed against Tris-HCl buffer,
concentrated and further purified by HPLC with a Superose 12 HR
10/30 molecular exclusion column (Amersham Bioscience), pre-
equilibrated with 150 mM NaCl in Tris-HCl buffer at a flow-rate of 0.5 mL/min. The fractions with laccase activity were pooled, dialyzed against Tris-HCl buffer, concentrated and stored at -20°C. Throughout the purification protocol the fractions were analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) on 7.5 % gels in which the proteins were stained with Coomassie blue. All protein concentrations were determined using the Bio-Rad protein reagent and bovine serum albumin as a standard.

Over-production of evolved mutants in *Aspergillus niger*.

The cDNA corresponding to the 7A9 mutant (3rd generation) was cloned in the expression vector pAN52-4. The sequence encoding the evolved α-factor prepro-leader of 7A9 for secretion in *S. cerevisiae* was replaced by the 24 amino acid glucoamylase prepro-sequence from *Aspergillus niger*, under the *E. nidulans gpd* promoter and trpC terminator. Co-transformants were selected on agar plates of selective minimum medium without uridine containing 200 mM ABTS, which gave green coloured colonies when laccase was expressed (51). In order to screen the laccase production in liquid medium, 50 mL of culture medium containing 70 mM NaNO₃, 7mM KCl, 200 mM Na₂HPO₄, 2mM MgSO₄, glucose 10% (w/v), trace elements and adjusted to pH 5.0 with a 1 M citric acid solution were inoculated by 1.10⁶ spores/mL. The culture was monitored for 11 days at 30 °C in a shaker incubator (200 RPM). The pH was adjusted to 5.0 daily with 1 M citric acid. Twenty positive clones were cultured in liquid for each construction. Results for laccase activity were ranging from 150 to 2400 Units/L. The best producer was
selected for the purification of laccase. For protein purification, 450 mL cultures were prepared in 1 L flasks in the same conditions and purified as reported elsewhere (51).

Characterization of evolved laccase variants.

Determination of thermostability: The thermostability of different laccase samples was estimated by assessing their T_{50} values using 96/384 well gradient thermocyclers. T_{50} was defined as the temperature at which the enzyme retains 50% of its activity after 10 min of incubation (18). Appropriate laccase dilutions were prepared in such a way that 20 μL aliquots produced a linear response in the kinetic mode. Subsequently, 50 μL-samples (three independent incubations for each point in the gradient scale) were subjected to a temperature gradient ranging from 35 to 90°C. The temperatures profile was established as follows (in °C): 35.0, 36.7, 39.8, 44.2, 50.2, 54.9, 58.0, 60.0, 61.1, 63.0, 65.6, 69.2, 72.1, 73.9, 75.0, 76.2, 78.0, 80.7, 84.3, 87.1, 89.0 and 90.0. After a 10 min incubation the samples were chilled on ice for 10 min and incubated at room temperature for a further 5 min. Afterwards, 20 μL of samples were added to 180 μL of 100 mM acetate buffer [pH 5] containing 3 mM ABTS, and the activities were measured in triplicate in kinetic mode. The thermostability values were deduced from the ratio between the residual activities incubated at different temperature points and the initial activity at room temperature (23).

Determination of optimum pH: Appropriate laccase dilutions were prepared in such a way that 10 μL aliquots produced a linear response in the kinetic mode. Plates containing 10 μL of laccase samples and 180
µl of 100 mM Britton and Robinson buffer were prepared at pH values of 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 and 9.0. The assay commenced when 10 µl of 60 mM ABTS or DMP was added to each well to give a final substrate concentration of 3 mM. The activities were measured in triplicate in kinetic mode and the relative activity (in %) is based on the maximum activity for each variant in the assay.

Steady Kinetic constants: The kinetics parameters were estimated at two different pH values for each substrate. Reactions were carried out by triplicate in a final volume of 250 µL containing the corresponding substrate in 100 mM acetate buffer pH 5.0 or 100 mM tartrate buffer pH 3.0. Substrate oxidation was followed by measuring the absorption at 418 nm for ABTS (ε₄₁₈ 36000 M⁻¹cm⁻¹), 469 nm for DMP (ε₄₆₉ 27500 M⁻¹cm⁻¹), and 312 nm for sinapic acid (ε₃₁₂ 17600 M⁻¹cm⁻¹) using the plate reader. To calculate the values of K_m and k_{cat}, the average V_{max} was represented versus substrate concentration and fitted to a single rectangular hyperbola function in SigmaPlot 10.0, where parameter a was equaled to k_{cat} and parameter b was equaled to K_m.

DNA sequencing. Plasmids containing HRPL variants were sequenced using a BigDye Terminator v 3.1 Cycle Sequencing Kit. The following primers were designed with Fast-PCR software (University of Helsinki, Finland): RMLN, PcLF1 (5'-cgacgagacttgtcattacgc-3'), PcLF2 (5'-cgaggtcgacttgcatcc-3'), PcLR3 antisense (5'- gcttcgtaggagtagtc-3') PcLR4 antisense (5'-acaagaacagtgggtttg-3') and RMLC.

Protein Modeling. A structural model of the *P. cinnabarinus* laccase crystal structure at a resolution of 1.75 Å (PDB id: 2XYB) was kindly
provided by Prof. K. Piontek, (University of Munich). Mutations selected upon PcL evolution were analyzed by DeepView/Swiss-Pdb Viewer (Glaxo SmithKline) and PyMol Viewer (DeLano Scientific LLC). Using the Swiss-Model protein automated modeling server (http://swissmodel.expasy.org/), evolved PM1L was modeled. The crystal structure of Trametes trogii laccase (PDB id: 2HRG; 1.58 Å resolution) which shares 97 % sequence identity with PM1L (43), served as a template.

RESULTS

Heterologous expression of PcL in *S. cerevisiae*. Native PcL, as many HRPLs, is not functionally expressed in *S. cerevisiae* at sufficient levels for *in vitro* evolution (32,41,42). To circumvent this problem, we constructed a fusion protein where the PcL signal leader peptide (21 amino acids) was exchanged for the prepro-leader (83 amino acids) of the *S. cerevisiae* α-mating factor (12), (Supplemental Fig. S1). This construction (α-PcL) yielded detectable levels of secreted laccase but still low and it was necessary to enhance the laccase production by optimizing certain micro-fermentation parameters (medium composition, copper uptake, temperature, shaking) to the levels required for the high-throughput format (Fig. 1). When the expression media was supplemented with ethanol (25 g/L) both laccase production and yeast growth was enhanced (Fig. 1A). We also found that CuSO₄ concentrations below 200 µM failed to produce a detectable response, whereas the addition of millimolar concentrations of CuSO₄ enhanced...
laccase activity (Fig. 1A) (28). Beyond 4mM, copper was toxic for the cell and decreased laccase activity (Fig. 1B). On the other hand, a significant increase on laccase levels was detected by lowering the incubation temperature from 30°C to 20°C (Fig. 1C). By optimization of the fermentation conditions, α-PcL activity levels increased to 0.03 U/L, which while still low, fall within the limits of sensitivity for the screening assays used for directed evolution.

Directed evolution of α-PcL in S. cerevisiae. Six rounds of directed evolution were performed in order to improve the functional expression, kinetics and pH profile of PcL. The evolution of *P. cinnabarinus* laccase was carefully planned to better adjust the exogenous enzyme to the yeast secretory route. Accordingly, the whole α-PcL fusion gene (α-factor pre-proleader plus PcL cDNA) was targeted for random mutagenesis and/or DNA recombination in conjunction with semi-rational approaches. Briefly, accumulated mutations after each round of evolution were initially evaluated in terms of the total activity improvement (TAI) in *S. cerevisiae* microcultures, i.e. the product of secretion levels and k_{cat} values when compared to the parental type. These two parameters were assessed after purifying the best mutants (see below), which were selected using a multi-screening colorimetric assay for the oxidation of phenolic and non-phenolic compounds of natural or artificial origin. Thus, a fine-tuning assay based on the natural phenolic mediator sinapic acid, the artificial non-phenolic mediator ABTS and the phenolic substrate DMP was adjusted and validated (with coefficients of variance below 10 %, Supplemental
Fig. S2). The use of the three substrates with different chemical characteristics to screen laccase activity guaranteed that the broad laccase substrate specificity was retained. Sinapic acid (a p-hydroxycinnamic acid) was chosen for the assay because: i) it is a natural redox-mediator of biotechnological relevance; and ii) its prompt oxidation by the enzyme generates a pool of phenoxyl radicals whose strong tendency for β-β' coupling produce the formation of pinkish colored dilactones detectable in the visible spectrum (16). HRPLs typically exhibit optimal activity at acidic pH, which differs considerably from the pH values used in many of their potential applications (32). In order to alter the PcL pH activity profile (which optimum pH vs ABTS is 2.0) the three colorimetric methods used in the screening assay were buffered at pH 5.0 where native PcL retained ~30 % of its activity.

Diversity was generated by classical random mutagenesis methods (i.e. Mutazyme and Taq/MnCl$_2$ polymerases adjusted to different mutational rates) in combination with in vivo approaches for DNA recombination. As we have previously demonstrated, the high frequency of homologous DNA recombination in S. cerevisiae can be extremely useful to promote beneficial crossover events for directed evolution experiments (2,3,41,69). In vivo DNA shuffling, backcrossing recombination or in vivo overlap extension (IVOE) for site directed mutagenesis/recombination were all employed in the present study (Fig. 2, Supplemental Table S1). In particular, the shuffling of mutagenic libraries from different parental types (in the 2nd and 3rd cycles) proved a suitable approach to recombine best mutations and
discover new mutations in the same round of evolution (Fig. 3). In the 4th round, we performed mutational exchange with another highly related basidiomycete laccase recently evolved in our laboratory (PM1L, sequence identity 77%, [41]) in order to check the compatibility of beneficial mutations between both laccase scaffolds, including that of the α-factor prepro-leader. The mutations R[α2]S, A[α9]D, A240P and P394H were all analyzed using this new strategy (Fig. 2). During the 1st cycle of α-PcL evolution, the A[α9]D mutation was introduced into the α-factor pre-leader producing a 13-fold improvement in secretion, and it was maintained from round 3 onwards in all selected mutants (Fig. 3). The P394H mutation was also discovered in the 1st cycle inducing a 5-fold improvement in specific activity, and it was conserved from round 2 onwards (Fig. 3). Sequence alignment of PcL with other fungal laccases (including PM1L) indicated that P394 belongs to a highly conserved region in HRPLs. Both the P394H and A[α9]D mutations were introduced and analyzed in the evolved PM1L, provoking similar improvements to those seen in PcL (with TAI values of 2.3-fold and 9.1-fold for P394H and A[α9]D, respectively). The A240P mutation (A239P according to PM1L numbering) was discovered in the 2nd round of PM1L evolution and it resulted in a 12-fold improvement in specific activity (41). This position is also highly conserved in both PcL and PM1L sequences. The A240P mutation was introduced by site-directed recombination /IVOЕ in the 7A9 mutant (4th generation), along with R[α2]S that improved secretion. The latter was selected in the 1st round of evolution of α-PcL (3D3 mutant) and accumulated in those selected
mutants of 2nd generation lacking the A[α9]D mutation. Finally, R[α2]S was lost during DNA-shuffling in the 3rd round due to its proximity to the selected beneficial mutation A[α9]D, which compromised the crossover event (Fig. 3). After constructing and exploring the site-directed recombination library, no further improvements in the activity of the 7A9 mutant were detected. Mutants containing the A240P mutation showed no beneficial effects on activity, while the R[α2]S mutation could not be found (either alone or in combination with A240P) in any of the clones sequenced. Hence R[α2]S and A[α9]D would seem to be incompatible for the secretion of active laccase. The following rounds of evolution combined mutagenic PCR with in vivo DNA-shuffling and backcrossing recombination, which gave rise to the ultimate variant, the α*-3PO mutant, with an 8000-fold increase in the total activity over the original parental type α-PcL (Fig. 2, Supplemental Table S1).

Biochemical characterization. Laccases from the evolution process (7A9 mutant, 3rd generation; α*-3PO mutant, 6th generation) were purified and biochemically characterized. The final mutant α*-3PO showed a total activity value of 300 U/L and secretion levels of ~2 mg/L. The molecular mass of the evolved laccases was ~120,000 Da, with a degree of glycosylation of around 50% evident in deglycosylation gels (Fig. 4A). Unlike evolved PcL expressed in yeast (α-PcL), the laccase from the fungus (wild-type PcL) resulted in a much lower molecular mass (~70000 Da), with glycosylation contributing around 10% (51). The main consequence of the hyperglycosylation was an improvement in
the thermal stability of α-PcL expressed by yeast, which displayed a T_{50} value 3.9 °C higher than that of the same enzyme expressed in the original host (wild-type PcL, Fig. 4B). However, the evolved α*-3PO mutant decreased its thermal stability showing a T_{50} of 71.2°C, (i.e. similar to the wild-type PcL from the fungus). The accumulation of beneficial mutations in this particular evolutionary pathway had destabilizing effects, as often occurs when evolving enzymes in the laboratory (10,55). Unfortunately, the very weak expression of the parental type α-PcL in *S. cerevisiae* (0.003 ABTS-U/L) hampered its purification to homogeneity and biochemical characterization. To circumvent this shortcoming and estimate the contribution of the evolved α-factor prepro-leader to the laccase secretion levels in yeast, two new fusion genes were engineered by *in vivo* overlap extension (IVOE) (2): i) α*-PcL that comprised the evolved α-factor prepro-leader plus the native PcL, and ii) α-3PO that comprised the native (non-evolved) α-factor prepro-leader plus the ultimate evolved mature PcL (3PO laccase). The TAI for α*-PcL and α-3PO were around 40- and 200-fold vs parental type α-PcL, respectively (Fig. 5). The evolved α-factor prepro-leader (α*) enhanced the secretion as much as 40-fold whereas some mutations in the 3PO mature protein (see Discussion Section) improved the secretion levels around 14-fold. All together increased 584-fold the functional expression of the evolved α*-3PO respecting the parent type α-PcL expressed by yeast (Table 1). Taking advantage of the notable enhancement conferred by the evolved prepro-leader, we used α*-PcL transformants to produce and purify the native PcL expressed in
yeast and compare it with the evolved variants. Activity (k_{cat}) of native PcL was similar regardless the laccase was expressed in *S. cerevisiae* or *P. cinnabarinus* (Table 1). Thus, final α*-3PO mutant showed 13.7-fold better k_{cat} for ABTS than the native laccase expressed by yeast or *P. cinnabarinus*. In particular α*-3PO kinetics improved with all the substrates tested when compared to the wild-type PcL from the fungus: the catalytic efficiencies for ABTS, sinapic acid and DMP increased 20-, 5.4- and 1.6-fold, respectively. This indicates that the overall activity of the evolved PcL was conserved after evolution. These considerable activity improvements with all the substrates tested laid the ground for further experimentation to drive evolution towards specific destinies.

Regardless of the substrate, the pH activity profile shifted noticeably towards more neutral values, a consequence of the selective pressure applied in the evolution (since screening was carried out at pH 5.0, Fig. 4C, D). The activity of the original PcL (either α*-PcL secreted by yeast or the wild-type PcL secreted by *P. cinnabarinus*) was optimal at pH 2.0 for ABTS (pH 3.0 for DMP) and it retained only ~30 % of its relative activity at pH 5.0. The α*-3PO variant exhibited a switch in optimum pH to 4.0, retaining over 90 % of its relative activity between pH 3-5. At pH 6.0, α*-3PO displayed over 10 % residual activity for both DMP and ABTS. This constitutes a promising starting point to engineer alkalophilic laccases with high-redox potential.

Although the screening assay was performed at pH 5.0 and the pH profile was broader after evolution, the net improvement in kinetics was not dependent on pH (Tables 1, 2). Thus, catalytic efficiencies of evolved
PcL variants were enhanced not only at the pH used in the screening assay (pH 5.0) but also, at the optimum pH of wild-type PcL (pH 3.0, Table 2). It is noteworthy that the turnover rates of the evolved variants for ABTS oxidation at pH 3.0 increased throughout evolution and they were again significantly higher than that of the wild-type PcL, even considering the 5-fold increase in catalytic efficiency of wild-type PcL to oxidize ABTS at pH 3.0 vs pH 5.0. The improved oxidation of ABTS at an acidic pH (close to the optimum pH value of the wild-type PcL for this substrate) was responsible for this difference (65). Interestingly, the evolved variants also displayed better turnovers for the oxidation of phenolic substrates at pH 3.0. Thus, the k_{cat} of the α*-3PO variant was 6.6- and 15.8-fold greater than the wild-type PcL when oxidizing DMP and sinapic acid, respectively. However, the affinity for phenolic substrates decreased (being notably lower at this pH than at pH 5.0), with K_m values up to 4.2- and 4.7-fold higher for DMP and sinapic acid, respectively. At pH 5.0, deprotonation of a highly conserved aspartate residue (Asp 206, side chain pKa 3.9) that interacts with the reducing substrate at the T1 Cu site (9) may have contributed to this effect (19).

Taken together, these findings indicate that the enhanced catalytic efficiency of *P. cinnabarinus* laccase through *in vitro* evolution was not pH-dependent. However, a remarkable increase of laccase activity at more neutral pH values was observed. A shift in the optimum pH of *T. versicolor* laccase has been reported following directed mutagenesis of the conserved Asp 206 residue (D206A) (39). The shift in the optimum pH (∆pH= 1.4) that results from this single mutation applied only to
DMP as a substrate and not ABTS, while the mutation decreased the catalytic efficiency towards DMP due to the notable increase in K_m. By contrast, we considerably enhanced the catalytic efficiency of the $P. cinnabarinus$ laccase and simultaneously shifted its optimal pH towards more neutral values, both for phenolic substrates and ABTS.

An intermediate variant of the evolutionary route (mutant 7A9, 3rd generation) was used to test its over-expression in *Aspergillus niger*. Accordingly, the evolved α-factor prepro-leader of 7A9 mutant was replaced by the glucoamylase prepro-sequence from *A. niger* to facilitate the transit and secretion in the new host. This fusion was under the glyceraldehyde 3-phosphate dehydrogenase (gpdA) gene promoter of *A. nidulans*. Functional expression levels of 23 mg/L were achieved, without optimizing the fermentation conditions. The mutant expressed by *A. niger* displayed similar biochemical features as the variant expressed by *S. cerevisiae*, including the remarkable shift in the pH profile (Fig 4C).

DISCUSSION

The differences between the basidiomycete machinery of $P. cinnabarinus$ and that of the ascomycete *S. cerevisiae* (one of the preferred hosts for the directed evolution of eukaryotic proteins) seem to hamper the successful PcL exportation by the yeast. We overcame this hurdle by constructing the α-PcL fusion gene, composed of the α-factor pre-proleader from *S. cerevisiae* and the mature laccase, and by optimizing the fermentation conditions to promote laccase production. Moreover, α-PcL was subjected to directed evolution in order to further
enhance its functional expression and catalytic efficiency, and to shift its pH profile. The presence of ethanol in the expression medium was necessary to detect laccase activity in micro-cultures. Although inhibition of growth has been reported in response to increased ethanol concentrations due to changes in yeast physiology and medium redox balance (21), we found that the use of ethanol as an extra carbon source was beneficial for the heterologous production of laccase and yeast growth (62). The improved secretion of laccase in the presence of ethanol was in accordance with previous reports of laccase production in other organisms (35,37). In addition to increasing cytoplasmic membrane permeability (38,48), ethanol may generate a stress response in the cell, inducing the expression of the chaperones that are involved in the protein folding/secretion process (62). Copper uptake is essential for laccase expression (28), establishing a compromise between protein secretion and copper toxicity when choosing the final copper concentration (in our case 2 mM CuSO₄). Unlike native producers in which copper is involved in the transcriptional regulation of these enzymes (20,47), in heterologous hosts, high copper concentrations appear to be necessary for the correct folding and assembly of the laccase during post-transcriptional phases. In conditions of copper-deficiency, misfolded laccase apoprotein may be produced and ultimately degraded (28). Furthermore, the apoprotein heterologously produced under low copper conditions can be reconstituted by exogenous added copper (34). Temperature is a key factor for optimizing heterologous expression of proteins in yeast, with low fermentation
temperatures positively regulating laccase production (17). Our results support the positive effect of low temperatures (20°C) on laccase production. Low temperatures can benefit protein folding as they reduce cell growth rates, allowing non rate-limiting protein folding (27). Although the *S. cerevisiae* strain used in this work is protease deficient, reduced activity of residual proteases at low temperature cannot be ruled out.

Filamentous fungi including *Aspergillus* (*A. awamori, A. niger* or *A. oryzae*) and *Trichoderma reesei* are widely used in biotechnology sector because of their superior ability to secrete large quantity of heterologous proteins. When the 7A9 mutant was expressed in *A. niger*, high secretion levels were achieved (up to 23 mg/L under non optimized conditions). This productivity could be further enhanced by molecular and bioprocess engineering (*i.e.* in bioreactor) (49). Alternatively, homologous over-production could be carried out. In fact, the native PcL was already successfully produced by homologous transformation (4). The expression system consisted of the *Schizophyllum commune* gpdA or the PcL genes promoters. A production of 1.2 g.L⁻¹ of laccase was achieved yielding a laccase with the same biochemical and physical characteristics to the native protein. Therefore, it seems plausible to design a similar approach for the over-production of PcL mutants evolved in *S. cerevisiae*.

Mutational effect on laccase secretion. After exploring over 10,500 clones during six generations of laboratory evolution, the final α*-3PO mutant selected harbored 14 mutations: 5 mutations in the α-
factor prepro-leader and the remaining 9 in the mature protein gene, of which were synonymous. All synonymous mutations favored codon usage, which can potentially enhance secretion levels, (Table S1) (22,54). Mutations in the α-factor prepro-leader probably help expression by adjusting the foreign protein with the secretory leader to the subtleties of the heterologous host. The α-factor prepro-leader encodes an 83 amino acid polypeptide, of which the first 19 residues constitute the pre-leader and the remaining 64 the pro-leader containing three sites for Asn-linked glycosylation. The pre-leader inserts the nascent polypeptide into the ER where it is cleaved by an endo-peptidase. The protein is then transported to the Golgi compartment, where the proleader is removed by the action of the proteases, KEX2, STE13 and KEX1 (7,54,59). Up to 13 positions were mutated in the α-factor prepro-leader during the entire α-PcL evolution, of which 5 were ultimately conserved in the α*-3PO mutant: A[α9]D, F[α48]S, S[α58]G, G[α62R] and E[α86]G. Four of these mutations were first introduced at the beginning of evolution (in the 1st and 2nd generation), further recombined and thus maintained in subsequent generations. Of the prepro-leader mutations, the A[α9]D mutation produced the greatest improvement that could be attributed to a single mutational change during the entire evolutionary route (up to 13-fold). When this mutation was reverted in the 6th generation, secretion dropped dramatically. A[α9]D is located at the hydrophobic core of the canonical preleader, which is involved in the orientation and insertion of the nascent polypeptide during translocation to the ER. In the
directed evolution of α-PM1L (41), a similar beneficial mutation (V[α10]D) was introduced in the same region, suggesting that reduced hydrophobicity in this area may be beneficial for secretion. Moreover, when the A[α9]D mutation was subjected to mutational exchange with α-PM1L, the same improvement was achieved independent of the laccase attached to the signal sequence. These results suggest that individual changes in the hydrophobic domain of the α-factor pre-leader involving charged carboxylic residues enhance the interaction between the pre-leader and the signal recognition particle, thereby improving the translocation of the polypeptide chain into the ER (11,46). The F[α48]S mutation was located in the pro-leader and interestingly, this same mutation (change and position) was also reported in a study of the directed evolution of the α-factor prepro-leader that sought to enhance heterologous secretion levels of a variety of proteins (50). The S[α58]G mutation was located at the second of the three N-glycosylation sites in the pro-leader (Asn-Ser-Thr). This site was not removed upon mutation, although the replacement of Ser by Gly may have altered the affinity for sugar anchoring. Results from the parallel in vitro evolution process with α-PM1L revealed that removal of the first glycosylation site of the pro-leader (by N[α23]K mutation) improved the secretion of active laccase (41). While glycosylation of the pro-leader may facilitate transit from the ER to the Golgi, our results do not support this hypothesis. Finally, the E[α86]G mutation was located at the processing site of STE13, a dipeptidyl aminopeptidase that removes the spacer peptide (Glu-Ala-Glu-Ala) and that lies between the α-factor pro-leader and the
mature protein. The singular conformational state adopted at the spacer residue upon mutation may alter the action of KEX2 at its cleavage target Lys-Arg. Notably, during the directed evolution of α-PM1L a beneficial mutation, (A[α87|T]), was also selected at the STE13 processing site (41). In view of the similarities between the mutational profiles and regions identified by in vitro evolution of the α-factor prepro-leader attached to different HRPLs, or even other unrelated proteins (50), it seems plausible to evolve this secretory leader as a universal signal peptide for the heterologous expression of HRPLs in yeast.

Mutations in mature evolved PcL. Laccases are organized into three cupredoxin-like domains (D1, D2 and D3). The trinuclear Cu cluster T2/T3 is embedded between D1 and D3, with both domains providing residues for the coordination of the copper ions. D3 contains the T1 mononuclear site, while D3 and D2 contain residues that participate in substrate binding. The mature 3PO laccase harbored five amino acid substitutions, all of which were located in D2 and D3 (N208S, R280H, N331D, D341N and P394H). Interestingly, taking into account the sequence similarities between both laccase scaffolds (75 %) and their parallel artificial evolutionary pathways, the positions mutated in the evolved PM1L were also exclusively located in D2 and D3 (Fig. S3). The relative positions of the mutations in the 3PO variant and their possible interactions with nearby residues were evaluated in light of the PcL crystal structure recently determined at a resolution of 1.75 Å (PDB id: 2XYB, Prof. K. Piontek, personal communication).
The R280H and D341N mutations are located at the protein surface, with the former very far from catalytic coppers, whereas the remaining three 3PO mutations are placed in the vicinity of the reducing substrate binding pocket, (Table 3, Fig. 6). Arg280 is located at the end of a distal β-sheet where it forms up to 5 H-bonds with neighboring residues in native PcL. Analysis of the 3D protein structure suggests that the R280H mutation may interrupt 3 of the 5 H-bonds, thereby enhancing the flexibility of this region (Fig. 6A, B). This effect could facilitate folding during the post-translational stages. The D341N mutation also maps to an external coil, (Fig. 6C, D). Apart from a new H-bond formed with a nearby residue, the most notable implication of this mutation is the generation of a new N-glycosylation site, which may aid protein stability or augment the secretion of heterologous proteins otherwise prone to aggregation in ER-derived vesicles (56). Interestingly, this position was initially mutated in the second generation, when activity levels were too low to be assessed in kinetic mode, and the stability of the mutant hits was compromised during screening.

The P394H mutation is located at the T1 Cu site where the reducing substrate is oxidized, (Fig. 6C, D). Pro394 is a highly conserved residue in fungal laccases, located contiguous to His395, one of the ligands of T1 Cu (61). The P394H mutation might modify the coordinating sphere of Cu T1 by the formation of a new H-bond with Ser427 which may pull down His395 and provoke an elongation of the T1Cu-Nδ H395 bond. These changes may affect the catalysis and/or the redox potential at the T1 copper site. Indeed, it has been previously reported that the
increased distance between the T1 Cu and the coordinating His456 contributes to the enhanced redox potential of the T1 Cu site in PcL and other HRPLs (49). Nonetheless, other structural characteristics like the nature of the second sphere residues that influence solvent accessibility and H-bonding around the T1 site, may also affect the redox potential of laccases. The impact of the P394H mutation on laccase activity was further supported by a mutational exchange carried out during the evolution of PM1L (41). P394H was introduced by site directed mutagenesis in the evolved PM1L, improving the kinetics constants of the enzyme.

The N208S mutation is located in a β-sheet next to the reducing substrate binding pocket, Fig. 6C, D. The binding pocket of laccases is relatively wide, surrounding the T1 Cu ion that is not exposed to solvent. Inside the cavity, the His456 (PcL numbering) coordinating the T1 Cu and the acidic residue at position 206 (Asp/Glu fully conserved in fungal laccases) are in close proximity, and they are both involved in substrate binding. His456 mediates the initiation of the catalytic cycle by retiring one electron from the reducing substrate, while Asp206 is responsible for removing a proton from the -OH or -NH2 group (31,43).

In the 3PO mutant, the N208S mutation appears to form two new H-bonds with His209 and Ile238, which may affect the relative position of Asp206 at the bottom of the binding pocket. The dramatic increase in K_m values for DMP observed over the course of evolution (Table 2) may be due to a weaker interaction of Asp206 with the phenolic substrate (60), making the transfer of the proton more difficult. Unlike DMP, it
seems like the interaction of Asp 206 with bulky phenolic substrates such as sinapic acid was not hindered, which explains the similar affinity for sinapic acid through evolution. ABTS affinity was not either affected since its oxidation occurs via a mechanism not involving proton transfer (31).

Residues from the enzymatic pocket are also of catalytic significance due to their key role in substrate binding even though they do not directly contribute for electron abstraction. When comparing the binding pockets of PcL and PM1L, the most noticeable differences were the wider size and less hydrophobic nature of the cavity in PM1L, (Fig. 6E, F). The steric threshold in laccases is reportedly dependent upon the distance between residues 332 and 265 (PcL numbering), which regulates the entrance of the reducing substrate to the binding pocket (60). The distance between both positions in PcL is 12.96 Å, almost half the distance in PM1L (21.86 Å) (Fig. 6G). These features could facilitate the traffic and oxidation by PM1L of bulky substrates with polar groups, such as ABTS. Indeed, we recently produced and characterized the PM1L wild type (unpublished material), which exhibited better kinetics for ABTS \(\frac{k_{\text{cat}}}{K_m} = 33580 \text{ s}^{-1} \text{ mM}^{-1}, K_m = 8.1 \mu\text{M} \) when compared with wild type PcL (Tables 1, 2). The 3PO PcL variant from the current study dramatically enhanced ABTS oxidation, with a catalytic efficiency \(\approx 20,000 \text{ s}^{-1} \text{ mM}^{-1} \) at both pH 5.0 and pH 3.0. The N331D mutation is located on one of the binding substrate loops (Fig. 6C, D, G, H) and it appears to form a new H-bond with Phe332. The movement of Phe 332 may broaden the entrance to the 3PO binding pocket, improving the
fitting of ABTS (and other bulky substrates such as sinapic acid) (Fig. 895 6G, H).

Conclusions. Ten years ago, the directed evolution of HRPLs was considered by many to be too littered with obstacles for success. The lack of functional expression in *S. cerevisiae*, the absence of reliable and specific screening assays, and limited knowledge of the mutational robustness of laccases discouraged researchers from adopting this approach. This changed when the first low-redox potential laccase was evolved in the laboratory (13). Since then, we have learned how to exploit the eukaryotic machinery of *S. cerevisiae*, which supports a high frequency of DNA recombination, both to produce laccase mutants and to generate diversity (42,68). PcL is a highly active and thermostable HRPL that can be easily produced in large amounts in heterologous hosts. In addition, its crystal structure enables rational/semi-rational design. The laboratory evolution platform presented in this study permits to evolve PcL towards specific destinies. To name a few, the design of more robust and efficient HRPLs will enable the engineering of 3D nanobiodevices for biomedical use and to employ evolved laccases for improving the use of plant biomass (15,37,41).

ACKNOWLEDGEMENTS

We thank Prof. Klaus Piontek (University of Freiburg) for providing the PcL crystal structure. This research was funded by EU Projects (NMP2-CT-2006-026456, NMP4-SL-2009-229255, COST Action CM0701 and KBBE-2010-4-26537) and National projects (CTQ2005-
A.C. was supported by a National Grant from the Ministerio de Ciencia e Innovación.

REFERENCES

FIGURE LEGENDS:

Figure 1: Study of the fermentation conditions for the directed evolution of α-PcL in *S. cerevisiae*. **A**] Effect of ethanol and copper on laccase secretion. The expression media was tested with 25 g/L ethanol (filled bars) or without ethanol (empty bars) and assayed at varying concentrations of copper. Activity on ABTS (black) and DMP (grey) are represented as the average values from five independent experiments (the 95 % confidence limits are shown). **B**] Effect of copper concentration on yeast growth (black circle 1, white circle 2, black triangle 3, white triangle 4, black square 6, white square 8 and black diamond 13 mM CuSO₄). Average values are from three independent experiments with 95 % confidence limits. **C**] Effect of the incubation temperature on yeast growth (squares) and laccase secretion (circles) by *S. cerevisiae*. Solid symbols, 20°C; open symbols, 30°C. Average values from three independent experiments with 95% confidence limits shown.

Figure 2: Family tree for the directed evolution of α-PcL. Non-rational approaches (random mutagenesis with different mutational rates and *in vivo* DNA recombination) were combined with a rational approach (mutational exchange with evolved PM1L through site-directed mutagenesis and site-directed recombination/IVOE). For each round of evolution, new mutations are underlined and presented in bold. The TAI (total activity improvement) indicates the overall improvement in laccase activity detected in *S. cerevisiae* microcultures for each mutant compared to the parent type α-PcL.
Figure 3: Schematic illustration of the possible crossover events in selected mutants from the 1st to 3rd evolution cycles. Silent mutations are not included.

Figure 4: Biochemical characterization of evolved laccases. A) SDS-PAGE. Lanes: 1 and 6, protein markers; 2, purified 7A9 variant (3rd G); 3, purified α*-3PO variant (6th G); 4, 7A9 deglycosylated with PNGaseF; 5, α*-3PO deglycosylated with PNGaseF. Samples were resolved on 7.5 % SDS-polyacrylamide gel and stained with Comassie brilliant blue. B) T_{50} of evolved laccases from the 3rd, 5th and 6th generations. White triangles, wild-type PcL; black squares, native PcL expressed in S. cerevisiae (α*-PcL); white circles, 7A9 variant (3rd G); black circles, 1H3 variant (5th G); black triangles, α*-3PO laccase (6th G). Each value and the standard deviation, is derived from three independent experiments. C, D) pH activity profiles of evolved laccases. White triangles, wild-type PcL; black squares, native PcL expressed in S. cerevisiae (α*-PcL); white circles, 7A9 variant (3rd G) expressed in S. cerevisiae; white squares, 7A9 variant expressed in A. niger; black circles, 1H3 variant (5th G); black triangles, α*-3PO variant (6th G). Activities were measured in 100 mM Britton and Robinson buffer at different pHs with 3 mM ABTS (C) or DMP (D) as the substrate. Laccase activity was normalized to the optimum activity value. Each value, including the standard deviation, is from three independent experiments. wild-type PcL: original laccase homologously expressed in P. cinnabarinus containing the native secretion leader; α*-PcL: original PcL fused to the evolved α-factor prepro-leader for secretion in S. cerevisiae; α*-3PO: ultimate variant of
the whole evolution process (containing the evolved α-factor prepro-leader plus the evolved PcL).

Figure 5: A) Different fusion genes engineered for the directed evolution of PcL. B) Aspect of the screening assay for the different constructs and differences in total activity levels between α-PcL, α*-3PO α*-PcL and α-3PO fusions. *S. cerevisiae* cells were transformed with pJRoC30 harboring the corresponding fusion gene and plated on SC dropout plates. Individual colonies were picked and inoculated in 96-well plate. Eight individual clones were evaluated for each fusion gene using the ABTS-screening assay (see Material and Methods for details). The breakdown for secretion was calculated using the k_{cat} improvement value for ABTS (Table 1).

Figure 6: Location of different residues in the Parental PcL and the mutations introduced by molecular evolution. A) Residue R280 in PcL (pdb: 2XYB, from K. Piontek). B) Mutation R280H in α*-3PO variant. C) Residues D341, N208 and P394 in PcL. D) Mutations D341N, P394H and N208S in the α*-3PO variant. E) Detail of the electrostatic surface of PcL crystal structure compared with F) the electrostatic surface of PM1L modeled on the basis of the crystal structure of *T. troggi* laccase (pdb: 2HRG), showing the differences in the amino acid residues that delimitate the binding site cavities (in yellow). A p-toluate molecule is modeled in the T1 Cu site of PM1L according to 2HRG. G, H) Detail of the binding pocket in PcL (G) and the α*-3PO variant (H). Residues defining the binding site cavity are depicted in yellow and the mutated positions in orange. Arrows indicate Phe332 and Phe265, marking the
entrance path of the substrate. Coordinating His residues are depicted in blue. Blue spheres represent the copper atoms.

SUPPLEMENTAL FIGURE LEGENDS:

Figure S1: PjRoC30-α-PcL construction for *S. cerevisiae*.

Figure S2: Evolution landscape for α-PcL libraries in *S. cerevisiae* from the multi-screening assay system. Activities were normalized vs the corresponding parent type (relative activity value 1.0).

Figure S3: Comparison between the amino acid sequences and the structures of evolved PcL and PM1L. The three cupredoxine-like domains (D1, D2 and D3) are represented in different colors, the copper atoms as blue spheres and the amino acid substitutions are highlighted as magenta sticks. In the sequence map, the mutations are highlighted in magenta and the conserved areas containing the copper ligands (in blue) are underlined.
Table 1. Kinetic constants at pH 5.0 of the purified PcL variants obtained by directed evolution and TAI breakdown.

<table>
<thead>
<tr>
<th>Laccase</th>
<th>Substrate</th>
<th>K_m (mM)</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>k_{cat}/K_m (mM$^{-1}$ s$^{-1}$)</th>
<th>TAI1 (in fold) vs α-PcL</th>
<th>Improvement vs α-PcL2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type PcL</td>
<td>ABTS</td>
<td>0.035 ± 0.002</td>
<td>38.0 ± 0.4</td>
<td>1085</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Sinapic acid</td>
<td>0.013 ± 0.000</td>
<td>21.6 ± 0.2</td>
<td>1662</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>0.027 ± 0.002</td>
<td>16.3 ± 0.3</td>
<td>581</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>α*-PcL</td>
<td>ABTS</td>
<td>0.020 ± 0.001</td>
<td>35.1 ± 0.9</td>
<td>1755</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Sinapic acid</td>
<td>0.020 ± 0.002</td>
<td>19.9 ± 0.5</td>
<td>948</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>0.012 ± 0.002</td>
<td>10.0 ± 0.3</td>
<td>833</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7A9 (3rd G)</td>
<td>ABTS</td>
<td>0.013 ± 0.001</td>
<td>205.1 ± 4.5</td>
<td>15777</td>
<td>900</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>Sinapic acid</td>
<td>0.020 ± 0.003</td>
<td>124.4 ± 5.6</td>
<td>6193</td>
<td>---</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>0.106 ± 0.004</td>
<td>90.6 ± 0.8</td>
<td>858</td>
<td>---</td>
<td>9</td>
</tr>
<tr>
<td>α*-3PO (6th G)</td>
<td>ABTS</td>
<td>0.024 ± 0.002</td>
<td>482.6 ± 10.2</td>
<td>19944</td>
<td>8000</td>
<td>13.7</td>
</tr>
<tr>
<td></td>
<td>Sinapic acid</td>
<td>0.023 ± 0.002</td>
<td>197.7 ± 4.7</td>
<td>8457</td>
<td>---</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>0.213 ± 0.013</td>
<td>196.9 ± 3.1</td>
<td>923</td>
<td>---</td>
<td>19.6</td>
</tr>
</tbody>
</table>

1The total activity improvement (TAI) was measured using 3 mM ABTS as the substrate in Supernatants of culture grown in 96-well plates.

2Values represent the average of five measurements. The improvement in expression is defined as the ratio of the total increase in activity and k_{cat} with ABTS as the substrate. α-PcL: parent type used in the directed evolution in S. cerevisiae (formed by the native α-factor prepro-leader and the native PcL); wild-type PcL: original laccase homologously expressed in P. cinnabarinus containing the native secretion leader; α*-PcL: native PcL fused to the evolved α-factor prepro-leader for secretion in S. cerevisiae; α*-3PO: ultimate variant of the whole evolution process (containing the evolved α-factor prepro-leader plus the evolved PcL).
Table 2. Kinetic constants of purified PcL variants at pH 3.0.

<table>
<thead>
<tr>
<th>Laccase</th>
<th>Substrate</th>
<th>K_m [mM]</th>
<th>k_{cat} [s$^{-1}$]</th>
<th>k_{cat}/K_m [mM$^{-1}$ s$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type-PcL</td>
<td>ABTS</td>
<td>0.028 ± 0.001</td>
<td>144.6 ± 1.1</td>
<td>5164</td>
</tr>
<tr>
<td></td>
<td>Sinapic acid</td>
<td>0.085 ± 0.004</td>
<td>52.8 ± 0.1</td>
<td>621</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>0.324 ± 0.015</td>
<td>26.4 ± 0.4</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>ABTS</td>
<td>0.076 ± 0.001</td>
<td>108.6 ± 1.4</td>
<td>1429</td>
</tr>
<tr>
<td>α*-PcL</td>
<td>Sinapic acid</td>
<td>0.174 ± 0.011</td>
<td>92.9 ± 3.2</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>0.449 ± 0.002</td>
<td>36.5 ± 0.4</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>ABTS</td>
<td>0.021 ± 0.001</td>
<td>287.7 ± 3.1</td>
<td>13766</td>
</tr>
<tr>
<td>7A9 (3rd G)</td>
<td>Sinapic acid</td>
<td>0.186 ± 0.011</td>
<td>222.2 ± 7.9</td>
<td>1196</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>1.002 ± 0.026</td>
<td>86.5 ± 0.9</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>ABTS</td>
<td>0.030 ± 0.002</td>
<td>707.3 ± 15.2</td>
<td>23977</td>
</tr>
<tr>
<td>α*-3PO (6th G)</td>
<td>Sinapic acid</td>
<td>0.401 ± 0.045</td>
<td>778.5 ± 61.5</td>
<td>1943</td>
</tr>
<tr>
<td></td>
<td>DMP</td>
<td>1.357 ± 0.034</td>
<td>159.2 ± 1.7</td>
<td>117</td>
</tr>
</tbody>
</table>
Table 3. Mutations in the mature 3PO variant.

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Domain</th>
<th>Secondary structure motif</th>
<th>Relative position</th>
<th>Distance to the T1 site (Å)</th>
<th>Distance to the T3 site (Å)</th>
<th>H-bonding with surrounding residues*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relative position</td>
<td>Before mutation</td>
<td>After mutation</td>
<td></td>
</tr>
<tr>
<td>N208S</td>
<td>D2</td>
<td>Beta sheet</td>
<td>Near D206 (responsible for binding phenolic substrates at the T1 site)</td>
<td>10.13</td>
<td>15.81</td>
<td>A264</td>
</tr>
<tr>
<td>R280H</td>
<td>D2</td>
<td>End of distal beta sheet</td>
<td>Surface</td>
<td>34.15</td>
<td>30.56</td>
<td>I188, V190, N256, P285, I287</td>
</tr>
<tr>
<td>N331D</td>
<td>D3</td>
<td>Beta sheet (substrate binding loop)</td>
<td>contiguous to F332 (key residue of the binding pocket)</td>
<td>9.20</td>
<td>17.77</td>
<td>F338</td>
</tr>
<tr>
<td>D341N</td>
<td>D3</td>
<td>Coil</td>
<td>Surface</td>
<td>15.16</td>
<td>19.64</td>
<td>---</td>
</tr>
<tr>
<td>P394H</td>
<td>D3</td>
<td>Coil (substrate binding loop)</td>
<td>Contiguous to H395 (T1 Cu ligand)</td>
<td>5.53</td>
<td>14.96</td>
<td>---</td>
</tr>
</tbody>
</table>

*Underlined, interrupted bonds after mutation; in bold, new formed bonds after mutation.