1 Scaling down the analysis of environmental processes: Monitoring enzyme activity in natural substrates at a millimeter resolution

4 Petr Baldrian1*, Tomáš Větrovský1

6 1 Laboratory of Environmental Microbiology, Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic

9 Running title: Monitoring enzyme activity at a millimeter resolution

11 Section: Methods

* Address correspondence to Petr Baldrian, baldrian@biomed.cas.cz
Abstract

Natural environments often show high levels of spatial heterogeneity. With a methodology based on the immobilization of fluorescent substrates, distribution of extracellular enzymes can be studied at a 2.3-mm resolution with a detection limit of 1.8 nmol.h\(^{-1}\).cm\(^{-2}\). The method is applicable to environmental samples such as wood, litter, soil or fungal colonies.
The determination of enzymatic activities is a simple approach to the study of environmental processes mediated by fungi and bacteria. Thus, enzyme activities have been interpreted as indirect measures of microbial biomass, rhizosphere effects, soil productivity or mineralization potential of naturally occurring substrates or xenobiotics (2). Fluorogenic 4-methylumbelliferyl (MUB) or 4-amidomethylcoumaryl-labelled enzyme substrates have been introduced for measuring the activity of a wide variety of hydrolytic enzymes, including exoglucanases, phosphatases, peptidases and several others with sufficient sensitivity based on the fluorescence of reaction products (2, 21).

The spatial dependence of environmental variables, such as enzyme activities, has been previously studied at various levels of resolution, for example, in the soil ranging from centimeters to kilometers (7). While the picture of the spatial distribution of environmental variables provides meaningful results at any scale, depending on the question asked and sample size chosen, both the decreasing sampling distance and sample size result in a decrease of spatial autocorrelation range due to the presence of spatial heterogeneity at different scales (9). In several environments, the extent of such spatial heterogeneity is high, even at scales smaller than a few centimeters. This was documented in the case of spatial distribution of phyllosphere or litter-associated fungi (15), decomposing wood colonized by saprotrophic basidiomycetes or ascomycetes (4), enzyme activity variation within the litter and soil horizons (1, 6, 20) or the distribution of soil bacteria. Bacterial diversity in soils on a millimeter scale (11) and communities of Archaea recovered as spatially independent 0.1 g subsamples from within a single 20-mm diameter soil core varied in their composition (14). The microbial biomass content and community composition, as well as the rates of microbe-catalyzed processes, have been demonstrated to vary considerably over a scale of several millimeters at the soil / litter interface (16-18). Additionally, lichen soil crusts show spatial heterogeneity at a comparable resolution (22). The understanding of the variability of microbe-catalyzed processes at such scales has been hindered by the limitations of sample
size requirements for the analysis. Previous efforts of dense sampling of enzyme activity were obtained at a resolution of centimeters (19) or limited to measurements along linear transects (12). Here, we show a fluorimetric MUB-based enzyme assay suitable for the study of small-scale distribution of extracellular hydrolytic enzymes of fungi and bacteria over surfaces of various substrates.

Samples (fungal colonies growing on agar, thin slices of colonized wood, soil or decaying leaf litter) were fixed into plastic plates and overlaid with a 1% low melting point agarose in a 50 mM Na-acetate buffer supplemented with appropriate MUB substrates immediately before application (45°C). After brief chilling at 4°C to solidify the agarose overlay, fluorescence was read at 40°C using a multimode microplate reader, Infinite® M200 (TECAN, Austria), by scanning the surface of the gel at a rectangular 2.3 × 2.3 mm grid for 5-10 min intervals over a period of 30-120 min. The data were visualized in Origin 8 (Originlab, MA, USA) and the geostatistical analysis (variogram construction and map construction by kriging) was performed in Surfer® 8 (Golden Software, Inc., CO, USA). Linear fitting was used to determine the relationships between fluorescence, MUB concentration and of fluorescence increase and the activity of purified β-glucosidase applied at various concentrations on the surface of an agarose gel and dried at room temperature under vacuum (Supplementary Text 1).

The amount of MUB linearly correlated with detected fluorescence ($P < 0.0001$) and the recorded increase of fluorescence corresponded well with the activity of purified β-glucosidase applied onto the gel surface ($P < 0.0001$; Fig. 1). The detection limit of the method was determined to be 1.8 nmol.h$^{-1}$.cm$^{-2}$ as 3× the maximal background fluorescence change.

Visualization of enzyme activity was carried out on (i) colonies of saprotrophic basidiomycetous fungi on malt agar (Fig. 2a,b); (ii) thin sections of a dead Betula pendula branch colonized by fungi with a fruitbody of Fomes fomentarius (Fig. 2c,d); (iii) Quercus
petraea leaves decaying in situ (Fig. 2e,f); and (iv) profiles of Quercus sp. forest topsoil collected with a soil slicer (10)(Fig. 1). The results show that even at the scale of a few square centimeters, enzyme activity varied considerably; the coefficients of variation (CV = SD/mean) of enzyme activities in fungus-colonized wood were 0.31 ± 0.10 for cellulohydrolase, 0.40 ± 0.08 for β-glucosidase, 0.52 ± 0.21 for N-acetylglucosaminidase and 0.56 ± 0.23 for β-xylosidase. In the decomposing leaves, the CV were 0.39 ± 0.08 for N-acetylglucosaminidase, 0.45 ± 0.12 for β-xylosidase and 0.41 ± 0.22 for cellulohydrolase. Even within single fungal colonies, the enzyme activities are unevenly distributed (Fig. 2).

In decaying wood, the enzyme activities spatially autocorrelated in a range of <30 mm (12 – 32 mm for cellulohydrolase, β-xylosidase, β-glucosidase, and N-acetylglucosaminidase). The cross-section of the log showed borderlines between different species or genets of fungal colonizers (4), and high or low enzymatic activity was often associated with a particular patch colonized by a specific fungus (Fig. 2c,d) the spatial autocorrelation of the enzyme activity being thus largely affected by the size of these patches. The spatial autocorrelation in leaves ranged from 29 ± 21 mm for β-xylosidase, over 43 ± 19 mm for cellulohydrolase, and up to 62 ± 16 mm for N-acetylglucosaminidase. This roughly corresponds to the sizes of areas in living plant leaves colonized by a single dominant fungal species (13), and we can hypothesize that the distribution of certain enzymes reflects the presence of their producers at this spatial scale.

Soil is a highly heterogeneous environment, and a link between the heterogeneity of soil physico-chemical properties and microbial abundance has been demonstrated at a centimeter scale (8). When sampled at a coarse scale with 16 cm² samples analyzed over a 144 m² site, the CV of β-glucosidase activity in Quercus sp. forest mineral soil was 0.29 (20). In the same soil, where 0.053 cm² samples were collected over an area of only 0.0048 m², the CV was very similar (0.24 ± 0.06). This shows that enzyme activity is highly variable, even within a few square centimeters. The soil properties, microbial biomass and enzyme activities
of the soil from this study showed spatial autocorrelation in a range of tens of centimeters to
more than one meter if 16 cm² samples were analyzed (3); the autocorrelation range of β-
glucosidase activity was 92 cm. Here, we show that the autocorrelation range drops to 21 ± 4
mm with a sample size reduction to 0.053 cm². To determine whether the current sample size
and sampling frequency was appropriate for the estimation of the range, the datasets were
resampled (i) by reducing the sampling depth to ¼ by the analysis on 0.053 cm² samples
taken at a double distance and (ii) by increasing the sample size to 0.212 cm² using the mean
activities of four adjacent squares. These analyses delivered range estimates of 22 ± 4 mm and
20 ± 3 mm, respectively, showing that the sampling distance and sample size did not represent
limitations for the reliable estimation of this important parameter.

There is a recent report on a method of enzyme measurement at submillimetre scale in
marine sediments (5). Unfortunately, due to the requirement of a foil adhesion onto sample
surface, this method is not applicable for dry samples with uneven surfaces. In terrestrial
environments, enzyme activity distribution was previously studied using a plexi window in
soil with filter paper containing enzyme substrates that enabled the visualization of the
presence or absence of enzymes, but not the quantification of activity (6). At present, the
lowest sample size used for the analysis of enzyme activity distribution was used for leaf
discs of immersed litter, where 0.20 cm² samples were analyzed individually on a 2 cm grid
(19). The method described here has an improved resolution and is technically more feasible
because whole surfaces are analyzed at once. The obvious limitation compared to classical
methods of sampling is the 2-dimensional sampling that quantifies enzyme activity associated
with surfaces rather than a volume of the sample. Despite this, the approach seems to be
useful for the study of spatial distribution of hydrolytic enzymes in environmental samples
with sufficient sensitivity. In addition, this work opens the possibility for future targeted
sampling of microbial community composition under enzyme activity hotspots, an approach
that can potentially increase our knowledge of microbial community structure/function relationships.

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic (LA10001, ME10152).

References

Fig. 1: Distribution of β-glucosidase in the *Quercus* forest soil profile. (a) The soil profile of *Quercus* forest soil after litter removal (80 mm width × 120 mm depth); (b) measured values of β-glucosidase activity in nmol h⁻¹ cm⁻²; (c) krigged map of the distribution of β-glucosidase; (d) the plot of semivariance against distance. (e) Linear fit of the observed fluorescence against the amount of MUF (n=6); (f) linear fit of the observed fluorescence change against the activity of purified β-glucosidase from almonds (Sigma, MO, USA; n=6).

Fig. 2: Distribution of hydrolytic enzymes across fungal colonies, fungus-colonised wood sections and decaying leaves. Distribution of (a) β-glucosidase and (b) phosphomonoesterase across the colonies of the saprotrophic basidiomycete *Hypholoma fasciculare* on Malt extract agar, (c) β-glucosidase and (d) cellobiohydrolase over a cross-section of a *Betula pendula* branch colonised by wood-decomposing fungi including *Fomes fomentarius* (fruitbody), (e) N-acetylglucosaminidase and (f) cellobiohydrolase (exocellulase) over the surface of *Quercus petraea* leaves decomposing for 10 months on the forest floor surface. Enzyme activities are expressed in nmol h⁻¹ cm⁻².