Identification and regulation of fusA, the polyketide synthase gene responsible for fusarin production in *Fusarium fujikuroi*

Violeta Díaz-Sánchez, Javier Avalos and M. Carmen Limón*

*Corresponding author. Mailing address: Departamento de Genética, Universidad de Sevilla, Apartado 1095, E-41080 Sevilla, Spain. Phone: +34-954557110. Fax: +34-954557104. E-mail: carmenlimon@us.es
Fusarins are a class of mycotoxins of the polyketide family produced by different Fusarium species, including the gibberellin-producing fungus *Fusarium fujikuroi*. Based on sequence comparisons between polyketide synthase (PKS) enzymes for fusarin production in other *Fusarium* strains, we have identified the *F. fujikuroi* orthologue, called *fusA*. The participation of *fusA* on fusarin biosynthesis was demonstrated by targeted mutagenesis. Fusarin production is transiently stimulated by nitrogen availability in this fungus, a regulation paralleled by the *fusA* mRNA levels in the cell. Illumination of the cultures result in a reduction of the fusarin content, an effect partially explained by a high sensitivity of these compounds to light. Mutants of the *fusA* gene exhibit no external phenotypic alterations, including morphology and conidiation, except a lack of the characteristic yellow/orange pigmentation of fusarins. Moreover, the *fusA* mutants are less efficient than wild type to degrade cellophane on agar cultures, a trait associated to pathogenesis functions in *Fusarium oxysporum*. The *fusA* mutants, however, are not affected in their capacities to grow on plant tissues.
Filamentous fungi are able to produce a wide range of secondary metabolites. Many of them are mycotoxins, i.e., compounds with undesired deleterious effects on human or animal health (8). There is a considerable lack of knowledge on the biological functions of many fungal secondary metabolites (7).

Fusarium species are able to produce a variety of polyketides, a heterogeneous family of chemicals whose synthesis starts from the sequential condensation of acetate units through the activity of a multifunctional polyketide synthase (PKS). Fungal PKSs are large multidomain enzymes, related to fatty acid synthases (31) and classified as type I PKSs according to the different classes described in bacteria (34). Variability in the type and number of domains contributes to the diversity of metabolites generated by fungal PKSs.

The *Fusarium graminearum* (*Gibberella zeae*) genome includes 15 presumptive PKS-encoding genes involved in the biosynthesis of different compounds (12) such as the pigments, fusarubin (35) and bikaverin (19), or the mycotoxins, zearalenone (38), aurofusarin (30) and fusarin C (13). We are interested in fusarin C, a mutagenic compound (13, 14, 40), which is active on mammalian cells *in vitro* (5). Fusarin C is an unstable compound, spontaneously converted into stereoisomers upon exposure to long-wave UV light (14). Its mutagenicity requires metabolic activation, but due to its instability, attempts to isolate the reactive metabolite have been unsuccessful (13). The mutagenic properties apparently rely on the C13-C14 epoxide group, present also in the fusarin C stereoisomers.

Little information is available on the regulation of fusarin C biosynthesis in *Fusarium*. Its production was induced by lack of zinc (17), and by the presence of a high carbon concentration (16) in *Fusarium moniliforme*. Fusarin C produced by *F. fujikuroi* (2) was enhanced upon growth at high temperature, low aeration (15), and nitrogen starvation (41). In addition to *F. graminearum*, the PKS responsible for fusarin biosynthesis (FusA/Fus1) has been identified in *F. moniliforme*, *Fusarium venenatum* and *F. verticillioides* (12, 32, 3). In this study, the gene encoding the PKS responsible for fusarin biosynthesis in *F. fujikuroi*, *fusA*, has been identified and characterized. The effect of nitrogen availability on fusarin production and *fusA* mRNA levels has been investigated. As predicted, *AfusA* mutants did not produce fusarin C, but they exhibited an unexpected reduction in their capacity to degrade cellophane.
MATERIAL AND METHODS

Fungal strains and culture conditions. Wild type *Fusarium fujikuroi* (*Gibberella fujikuroi* mating population C; (22)) FKMC1995 (kindly provided by John F. Leslie) and IMI58289 (Commonwealth Mycological Institute, London, England) were used. Unless otherwise stated, strains were grown on DG minimal medium (1) with L-asparagine instead of NaNO₃ as a nitrogen source (DGasn). For selection of transformants, the medium was supplemented with 50 mg/ml hygromycin. For conidiation analyses the strains were grown in the dark for 7 days at 22°C on DGasn. For determination of colony growth, a piece of mycelium from each strain was spotted onto DGasn agar and incubated in the dark or under illumination for 7 days at 22°C or 30°C.

For analysis of fusarin production, the strains were grown at 30°C, in the dark or under illumination (3 W/m² white light, approximately 180 lux, provided by four fluorescent lamps OSRAM L, 18W/840 LUMLUX, Germany), in 500 ml Erlenmeyer flasks with 250 ml of DG medium with the indicated nitrogen source. The flasks were inoculated with 10⁶ conidia and incubated for 3 to 14 days on a rotary shaker at 150 rpm. To study the effect of nitrogen concentration L-asparagine was used at two concentrations: 20 mM (high-N medium) or 4.2 mM (low-N medium). The nitrogen concentration in the low-N medium corresponds to the N/C ratio obtained with 1 g/l NH₄NO₃ in ICI medium, described as a limiting N content (4). Production was also analyzed with other nitrogen sources: 35.3 mM NaNO₃, 25 mM NH₄NO₃, 20.5 mM glutamine and 33.7 mM alanine for high-N medium, and 7.4 mM NaNO₃, 3.75 mM NH₄NO₃, 4.31 mM Gln and 7.08 mM Ala for low-N medium.

For DNA isolation, the strains were grown in 50 ml of DGasn medium in 250 ml Erlenmeyer flasks for 2 days at 30°C and 150 rpm. Mycelia were filtered from the media through Whatman paper. For RNA isolation, mycelial samples were filtered from the media after growing in the conditions described above for fusarin production. Mycelia were frozen in liquid nitrogen up to use.

Fusarin analysis. Fusarins were extracted from mycelia and culture medium and measured. Three-ml medium samples were extracted twice by partition with an equal volume of chloroform. The extracted samples were combined and vacuum dried in a concentrator Plus (Eppendorf, Germany), and resuspended in 0.2 ml of methanol. For cell extraction, ca. 20 mg of lyophilized mycelia were ground with methanol in a Fast-Prep®-24 homogenizer (MPT™ Biomedicals LLC Europe, France) using sea sand (Panreac...
Química SAU, Barcelona, Spain) and 2 pulses of 30 s at 6 m/s. The extracted samples were vacuum dried and resuspended in 0.2 ml methanol. Fusarin concentrations were determined through absorption at 350 nm using an UV/Vis spectrophotometer (Beckman DU®, USA) as described (2).

Identification and targeted mutation of fusA. The sequences for the fusA orthologues of F. graminearum and F. verticillioides were obtained from the Fusarium Comparative Database (http://www.broadinstitute.org/annotation/genome/fusarium_group/MultiHome.html) and compared with the CLUSTAL alignment program. Because of the large size of this gene (ca. 11 kb in the indicated species), two primer sets (Table I) were designed to amplify two distant fusA gene segments, that we called pksF1 and pksF2 (Fig. 4). PksF1 is a 1.6-kb DNA fragment obtained with the primer set fusA-1F/fusA-1R (Table I), partially covering the N-terminal KAS and AT domains (Fig. 4). PksF2 is a 1.2-kb DNA fragment obtained with the primer set fusA-2F/fusA-2R, partially covering the C-terminal AMP and PP domains (Fig. 4). Identity of the PCR products was confirmed by sequencing. To facilitate the subcloning of the pksF1 and pksF2 fragments, the primer sets were modified to include artificial restriction sites: fusA-4R (ApaI) / fusA-4F (KpnI) for pksF1 of and fusA-5F (SpeI) / fusA-5R (NotI) for pksF2. The resulting products were separately cloned into the pGEMT Easy vector (Promega). The hygromycin resistance (hyg^R) cassette from plasmid pAN7-1 (24) was released by digestion with BglII and BamHI and cloned in pBluescript KS+ (Stratagene), giving plasmid pVIO2. PksF1 and pksF2 fragments were released from their pGEMT corresponding plasmids and cloned in pVIO2 flanking the hyg^R cassette, producing the fusA disruption vector pVIO3. Plasmid constructions and orientation of cloned DNA segments were confirmed by restriction analysis. For F. fujikuroi transformation, FKMC1995 protoplasts were obtained as described (10). A suspension of 3x10^8 protoplasts was transformed with 5 µg of lineal pVIO3, following Proctor et al. (23).

Molecular techniques. Genomic DNA for PCR and Southern blot analyses was isolated from mycelium as described by Weinkove et al. (39). PCR analyses were performed with ca. 50 ng genomic DNA, 0.2 mM dNTPs, 1 µM forward and reverse primers and 0.2 U/µl polymerase Ecotaq (Bioline). Reaction mixtures were heated at 94°C for 2 min followed by 35 cycles of denaturation (94°C for 30 s), annealing (48 to 55°C for 30 s, according to melting temperature of the primers) and polymerization (72°C for 1 to 2 min, depending on the length of the expected product), and by a final polymerization step at 72 °C for 5 min. Amplified DNA fragments were purified with GFX PCR DNA and Gel...
Band purification kits (GE Healthcare, UK) and cloned into pGEM-T Easy vector (Promega).

Southern blot hybridization was performed using standard protocols (28). Fragment pksF2 was radioactively labeled and used as a probe.

Gene expression analysis. For isolation of total RNA, mycelia were lysed in a Fast-Prep®-24 homogenizer prior to using the RNeasy Plant Mini kit (Qiagen). Total RNA concentration was estimated with a Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Real-time qRT-PCR expression analyses were performed on total RNA samples as template using 7500 Real Time PCR System (Applied Biosystems) as previously described (26). Primer sets for qRT-PCRs, designed with Primer Express™ v2.0.0 software (Applied Biosystems), were RTfusA-1F/RTfusA-1R for the fusA gene and tub-2F/tub-2R for the β-tubulin gene, used as a control for constitutive expression. Relative gene expression was calculated with the 2^ -ΔΔCT method with Sequence Detection Software v1.2.2 (Applied Biosystems). Samples from 2 independent experiments were assayed by duplicate to ensure statistical accuracy.

Cellophane and virulence assays. For cellophane penetration assays, DGasn plates were covered with sterile cellophane discs (Scotch, Cergy Pontoise, France) and inoculated in the center of the plate with 5-mm-diameter mycelial discs of each strain. After incubating the plates at 30°C in the dark for 9 days, the cellophane discs were removed and the mycelia were separated from them. The discs were observed under a stereoscopical microscope (Nikon, Japan) and photographed with a digital camera.

Invasive growth assays on tomato fruit (cv. Daniela) and apple slices (cv. Granny Smith) were carried out as previously described (9, 20) using at least three replicates.

Sequence analysis. BLAST analysis was done through the NCBI server (www.ncbi.nlm.nih.gov/blast). BlastP searches were carried out against the non-redundant Swissprot database. Alignments were achieved with Clustal W program (EMBL-EBI European Bioinformatics Institute, http://www.ebi.ac.uk/clustalw/). DNA sequences for protein alignments were obtained through the server www.broad.mit.edu/annotation/fungi of the Broad Institute (Cambridge, MA, USA).

A draft sequence of *F. fusarium* IMI58289 genome was obtained with a Roche 454 Genome Sequencing System (454 Life Sciences Corporation, Branford, CT, USA) at Unitat de Genòmica (CCiT, Universitat de Barcelona, Spain). Genome assembly was done by S. Beltrán (Unitat de Bioinformàtica, Serveis Cientificotècnics, University of Barcelona, Spain) based in 339 Mb of total reads, with an average read size of 287 bp.
Nucleotide sequence accession number. The DNA sequence of fusA gene was submitted to the GenBank database. Accession Nº: JX308619

RESULTS AND DISCUSSION

Effect of nitrogen on fusarin production. To confirm the dependence of fusarin production on nitrogen availability, we analyzed the effect of nitrogen source and concentration on the accumulation of fusarins in the mycelia and in the medium in the wild type strain FKMC1995. We tested the nitrogen sources: NaNO₃, NH₄NO₃, Asn, Gln and Ala at excess (high-N) and limiting (low-N) concentrations under dark conditions. Fusarin content was enhanced in high-N media in most of the cases, with the higher productions with organic N sources, i.e. Asn, Gln or Ala (Figure 1A). Fusarin production was much lower in mycelia grown in low-N media, except with NH₄NO₃, in which the levels of fusarin were not significantly affected by the concentration of this salt. Similar results were obtained upon analysis of fusarin secreted to the media (Figure 1B). In this case, however, the differences in fusarin content between cultures with organic and inorganic N sources were less pronounced than those observed in the mycelia; again, the fusarin levels with low NH₄NO₃ concentrations were significantly higher than those with low amounts of other nitrogen sources.

To get a deeper knowledge on the effect of nitrogen on fusarin production, time course experiments were done in high-N and low-N media, using Asn as the nitrogen source. In this case, the production was also assayed with a second wild type strain, IMI58289. As expected, the amounts of fusarin in the medium were higher in high-N medium than in low-N medium. The fusarin content increased in the first days of incubation, to reach a maximum at about one week, and decreased afterwards. The IMI58289 strain produced about two-fold less fusarin than FKMC1995, but it exhibited similar production kinetics (Fig. 2A). Additionally, FKMC1995 and IMI58289 differed in their production in low-N medium: while the FKMC1995 strain was still able to secrete up to 25% of the fusarins produced in high-N conditions, this mycotoxin was hardly detected in the low-N IMI58289 cultures (Fig. 2A). Thus, the difference in fusarin production between high-N and low-N medium was from 3 to 5-fold in FKMC1995 compared to more than 10-fold in the case of IMI58289.
In agreement with the fusarin concentrations found in culture filtrates, the FKMC1995 hyphae contained more fusarins in high-N than in low-N medium. In this case, the increase in high-N medium was more remarkable, becoming up to 8-fold higher compared to the fusarin content in the low-N filtrates. The highest fusarin concentration in the FKMC1995 mycelia was found after a 9-day incubation (Fig. 2B) and kept high along aging. However, in contrast to FKMC1995, very low levels of fusarin could be detected in the IMI58289 cells along the two-week incubation, either in high or low-N media (Fig. 2B). A rough calculation of fusarin distribution in FKMC1995 cultures after 9 days of growth indicates that approximately 62% of the total fusarin content was inside the cell and 38% was in the culture medium. This ratio was inversed in the IMI58289 cultures, with 5% in the mycelium and 95% in the culture medium. However, total production was lower in the latter (18.6 mg/g dry weight) than in FKMC1995 (29.3 mg/g dry weight). Thus, the two wild type strains differed in their fusarin distribution patterns: while FKMC1995 accumulated significant amounts of fusarin in the cells, IMI58289 seemed to secrete them actively, suggesting a more efficient fusarin efflux system in this strain.

The stimulation of fusarin synthesis by *F. fujikuroi* by the presence of nitrogen fits former observations (41), and differs from the predominant rule in the regulation of secondary metabolism in this fungus, usually associated to nitrogen starvation (discussed in a later section). Consistent with the need of nitrogen, fusarins were already found in the younger culture samples, indicating that they are produced by actively growing mycelia. The production kept active for about one week, but went down in more advanced culture stages, with predictably lower nitrogen concentrations.

Effect of light on fusarin production. Light is a key environmental signal that affects many metabolic pathways in fungi (36). Fusarin production in *F. fujikuroi* is affected by mutations in proteins putatively involved in light regulation, WcoA (11) and FfVel1 (41). For this reason, we also checked the effect of light on fusarin production in the time-course experiments. Under illumination, significant amounts of fusarin were only detected in the cultures of the FKMC1995 strain in high-N conditions, either in the mycelia or in the medium. In contrast, only minor concentrations were found in the cultures of the IMI58289 strain irrespective of the nitrogen concentration (Fig. 2C and 2D). Moreover, after two weeks of incubation, fusarins totally disappeared from the medium and the mycelia of the illuminated FKMC1995 cultures.

The differences between illuminated and dark-grown cultures may be explained either by a regulatory mechanism or by light-sensitivity of the fusarins. To gain insights on the
basis of this effect, a fusarin-containing sample was obtained by filtration of a dark-grown high-N culture of the FKMC1995 strain, and kept in the dark or exposed to white light up to 78 h (same conditions that in the time course). The amount of fusarin, determined from its absorbance peak at 350 nm, remained approximately unaltered during this time in the dark, but decreased rapidly in the light, disappearing totally after 40 h of illumination (Fig. 3). Similar results were obtained in samples from IMI58289 cultures (Fig. 3 inset) or if fusarins were extracted from the medium and illuminated in a methanol solution (data not shown). We conclude that the lower fusarin amounts in the illuminated cultures are the result of a high sensitivity to light of these compounds. Interestingly, in contrast to the FKMC1995 control, no fusarins were detected in the mycelia of mutants for the White collar gene wcoA after one-week incubation under light on high-N agar (14), suggesting a WcoA-mediated stimulatory mechanism in FKMC1995 to compensate fusarin degradation.

Taking into account the degradation rate (approximately 0.84/day and 0.63/day for FKMC1995 and IMI5828 filtered samples, respectively), we may estimate the expected fusarin amounts in the light in the absence of degradation. In the most productive period, between days 3 and 5 (Fig. 2A and C), the fusarin content in the FKMC1995 cultures increased approximately 62 and 54 mg/l·day in the dark and under illumination, respectively. If we correct the production in the light with the degradation rate, the real production would reach 332 mg/l·day, i.e., five-fold higher than in the dark. This is probably an overestimate, since the fusarins may be partially protected against light by the mycelia in the culture by a shading effect. However, it seems very likely that the real production by FKMC1995 is higher in the light than in the dark, at least in the early stages of the culture. This was not the case of IMI58289, whose production rates during the same time period were 24 mg/l·day in the dark and 1 mg/l·day in the light. The correction with the degradation rate would elevate the value in the light to ca. 5 mg/l·day, still below the 34 mg/l·day of the dark-grown culture. Thus, both strains differed in their fusarin productions in response to light.

Identification of the fusarin polyketide synthase gene fusA. The PKS gene responsible for fusarin biosynthesis was identified and confirmed by targeted disruption in Fusarium moniliforme and Fusarium venenatum (fusA, (32)), and in F. graminearum (GzFUS1, (12)). In the latter case, the analysis was extended to 14 additional PKS genes, many of them with unidentified function. A Clustal alignment of the 15 putative PKS protein sequences of F. graminearum investigated by Gaffoor et al. (12) revealed the occurrence in all of them of conserved typical domains for PKS activity, extending along
2000-2500 amino acid sequences (Fig. 4). The highest similarity to PKS10 is exhibited by PKS9, which is involved in the synthesis of fusarielins, no related to fusarins (33). The analysis of the predicted GzFUS1 (PKS10) polypeptide with the Simple Modular Architecture Research Tool (SMART, see Material and Methods) revealed 10 protein domains: KS, AT, DH, MeT, KR, PP, C, AMP, PP and NAD (see Fig. 4 legend for domain descriptions). The first six domains are characteristic of PKS enzymes while the four additional ones, located in a carboxy extension absent in other *F. graminearum* PKS enzymes, are conserved in non-ribosomal peptide synthase (NRPS) enzymes. The combination of PKS domains with predictable NRPS domains makes this PKS enzyme the largest from this family known to date. The NRPS module was suggested to be involved in specific biosynthetic steps for amino acid modifications to produce the pyrrolidone ring of fusarin (25). The specific presence of this module in fusarin PKS genes could be used for the detection of putative fusarin-producing fungi in food and cereal grains.

BLAST analyses of the GzFUS1 sequence against other publicly available *Fusarium* genomes revealed the occurrence of a clear orthologous in *F. verticillioides*, but not in *F. oxysporum*. The capacity of *F. fujikuroi* to produce fusarins implies the occurrence of a highly similar orthologous gene in its genome, that we shall call *fusA*. The availability of the GzFUS1/fusA *Fusarium* sequences allows designing primers from highly conserved protein and DNA segments. Because of the unusually large size of GzFUS1 in *F. graminearum* (11,859 bp, 3,920 aa, annotation code FGSG_07798), or its orthologue in *F. verticillioides* (12,189 bp, 3,855 aa, annotation code FVEG_11086), we based our cloning strategy in two distant conserved ORF segments, that we called pksF1 and pksF2 (see Fig. 4 and Material and methods). The corresponding PCR products were sequenced and confirmed to be the predicted *fusA* fragments.

In a late stage of this work, a draft of the *F. fujikuroi* genome was obtained by massive sequencing techniques (see Material and Methods). A BLAST search against the genomic sequence database provided the complete *fusA* gene sequence, containing the same PKS and NRPS domains found in PKS10 (Fig 4B). The sequence available from the predicted *F. fujikuroi* *fusA* product showed a higher degree of identity with the *F. verticillioides* orthologue (92.1 %, FVEG_11086) than with GzFUS1 (72.2 %, FGSG_07798).

Regulation of the gene *fusA*. The identification of *fusA* as a key structural gene of fusarin biosynthesis allows the analysis of its transcriptional regulation. The *fusA* mRNA levels were determined by qRT-PCR in mycelia from the two wild type strains in time-course experiments, either in high-N or low-N medium and either in darkness or under
illumination. In agreement with fusarin production (Fig. 2), the amount of fusA mRNA increased several fold between 5 and 7 days incubation in high-N medium (Fig. 5), while such increase was not apparent in low-N medium. Upon aging, i.e., after 10 days incubation or longer, the fusA mRNA content in high-N medium decreased to reach similar concentrations as in low-N medium, or even lower. Similar results were obtained with both strains either in the dark or under illumination, except that the induction in high-N medium was somewhat slower in IMI58289 (Fig. 5C and 5D) than in FKMC1995 (Fig. 5A and 5B). Additionally, the induction in high-N medium was apparently less prominent in the light than in the dark for both strains.

Nitrogen is available at the start of the incubation in low-N medium. Therefore, we might expect a certain level of fusA induction at a very early growth stage under these culture conditions. This might explain the high fusA mRNA content in the 3-day old FKMC1995 mycelia in low-N medium. However, such effect was not apparent in the light, or in the IMI58289 strain.

The positive correlation between fusarin production and fusA mRNA levels indicates that the nitrogen activation is most probably achieved through transcriptional induction of the structural genes. This regulatory pattern is opposite to the mRNA regulation of the structural genes for the gibberellin, bikaverin and fusarubin biosynthetic pathways in the same species, which are induced by nitrogen starvation (27, 35, 37, 42). On the other hand, light had only minor effects on fusA mRNA levels. These results do not fit our estimates of real fusarin amounts in the illuminated cultures, which suggested up and down regulatory effects of light on FKMC1995 and IMI58289, respectively. These presumed differences are not reflected in the observed mRNA patterns, suggesting the mediation of other regulatory mechanisms.

The activation of fusA in high-N medium is transient, suggesting that nitrogen availability is not sufficient to keep the induction. Probably, fusA expression is also controlled by other regulatory signals, possibly linked to the growth stage of the cell. On the other hand, the decrease of fusA mRNA to basal levels in aging cultures fits with the cessation of fusarin accumulation after one week. The fusarin amounts actually decrease, what implies further metabolizing or chemical instability of the product. A similar decay was formerly observed in an IMI58289-derived mutant under different culture conditions (2). However, compared to the high instability in the light, our results indicated that fusarins were relatively stable under darkness, which is in agreement with recent data (18).
Targeted mutation of *fusA*. The cloned pksF1 and pksF2 segments of *F. fujikuroi* were used to construct the disruption plasmid pVIO3, in which both *fusA* segments surround a hygromycin resistance cassette (Fig. 6A). FKMC1995 protoplasts were incubated with linearized pVIO3 and regenerated under hygromycin selection. After one-week incubation, 11 transformants were obtained. Five of them lacked the characteristic wild type orange pigmentation. Five representative transformants, 3 of them from the latter class (T3, T4 and T6, Fig. 6C), were passed through single conidia and subcultured under hygromycin selection. Genomic DNA from the wild type and the 5 transformants were analyzed by Southern blot using the pksF2 fragment as a probe. The sizes of the expected hybridizing bands, 1.6 kb for the wild type *fusA* gene and 3.6 kb for the hygR-disruption version (Fig. 6A), showed the occurrence of wild type *fusA* genes in T5 and T7, and truncated *fusA* genes in T3, T4 and T6 (Fig. 6B), indicating that the latter have undergone the expected homologous recombination events. T3 and T4 exhibited a second band hybridizing with *fusA*, in addition to that from the disruption event, suggesting an additional ectopic integration of the cassette.

The T3, T4 and T6 disruption, called hereafter Δ*fusA*, were grown under different culture conditions for detailed phenotypic characterization. Mycelia of these three strains grown in high-N media, either in surface or submerged conditions, did not exhibit the characteristic orange pigmentation of the wild type (Fig. 6C and 6D). This must be attributed to lack of fusarin accumulation, as indicated the absence of the typical 350-nm absorption peak of these compounds (Fig. 6C). This result is consistent with the occurrence of a truncated PKS protein in the mutants containing only the β-ketoacyl synthase domain and a partial acyl-transferase domain (Fig. 6A). It cannot be discarded that these mutants produce an intermediary compound through the activity of these domains. However, lack of fusarins in the Δ*fusA* mutants strongly supports that the *fusA* gene identified in *F. fujikuroi* encodes the PKS-NRPS enzyme responsible for fusarin biosynthesis in this fungus.

Growth characteristics and virulence of Δ*fusA* mutants. Mycelial development of the three Δ*fusA* mutants, measured as radial growth of 7 day-old agar colonies on high-N medium, did not show significant differences with the wild type strain, either at 22°C or 30°C, under illumination or darkness. Also, no significant difference could be observed in these mutants compared to the control in colony morphology or in the number of conidia produced under the same culture conditions.
In order to test if ΔfusA mutants are affected in virulence we performed different assays. The capacity to penetrate a cellophane membrane on agar medium correlates with major virulence functions in *F. oxysporum* (21). Former observations showed that *F. fujikuroi* IMI58289 degraded cellophane covering DG agar (J. Avalos, unpublished). In our tests, FKMC1995 penetrated across the cellophane on DGasn agar and reached the agar surface after 5 days of incubation at 30°C. Unexpectedly, the ΔfusA mutants were unable to cross the cellophane discs after 9 days of growth (Fig. 7A), although some penetration could be observed after longer incubation periods. In these experiments the pigmentation due to fusarin secretion was quite noticeable in the wild type cultures, but not in those of the ΔfusA mutants. The difference in the capacity to penetrate cellophane was also noticeable when the mycelia were removed from the cellophane sheet; while it was difficult to detach the wild type mycelia from the cellophane surface, those of the ΔfusA mutants were readily separated (Fig. 7B). In *F. oxysporum*, the ability to cross cellophane membranes on agar cultures varied with the N sources: cellophane penetration was efficient in the presence of nitrate, but not with ammonium (21), a result confirmed with other pathogenic fungi, such as *F. oxysporum* or the rice blast *Magnaporthe oryzae* (6, 21). In our case, FKMC1995 exhibited a similar degrading ability on minimal agar supplemented either with asparagine or with NH4NO3 (results not shown).

The biological function of fusarins remains unknown. These compounds might help the fungus to counteract competitor microorganisms or might play a role in the natural infection process. The correlation of cellophane degradation with pathogenicity on tomato plant by *F. oxysporum* (21), and the loss of this ability by the *F. fujikuroi* ΔfusA mutants, led us to carry out plant invasion tests with our strains. The ΔfusA mutants invaded two different classes of plant tissues in a similar way than the wild type (representative results in Fig. 7C), suggesting that fusarin production plays no role in this trait. Cellophane degradation should imply the activity of extracellular hydrolytic enzymes, such as cellulases. The phenotype of the ΔfusA mutants suggests that fusarin, or a fusarin degradation product, could play a regulatory role on the activity of cellulases or other hydrolytic enzymes, either on gene expression or enzymatic activity. A connection between cellulase induction and the expression of a cytochrome P450-monoxygenase gene involved in mycotoxin biosynthesis was found in *T. reesei* (29). The occurrence of regulatory relations between cellulase production and secondary metabolism has been
poorly investigated; our results provide a new model system for future investigations of such regulatory relations.

ACKNOWLEDGMENTS

This research was supported by the European Union (European Regional Development Fund, ERDF), Spanish Government, Projects BIO2003-01548 and BIO2006-01323 from Ministerio de Educación y Ciencia, and Andalusian Government, Project P07-CV1-02813. VDS was supported by a grant from Plan Propio of University of Seville.

REFERENCES

the vascular wilt fungus *Fusarium oxysporum* is essential for root penetration and pathogenesis. Mol. Microbiol. 39:1140-1152.

FIG 1. Effect of the nitrogen source and its concentration on fusarin production. *F. Fujikuroi* FKMC1995 cultures were grown in liquid minimal DG in the dark at 30°C for 7 days. High nitrogen concentrations were: 35.3 mM NaNO3, 25 mM NH4NO3, 20 mM Asn, 20.5 mM Gln, 33.7 mM Ala. Low nitrogen concentration: 7.4 mM NaNO3, 3.75 mM NH4NO3, 4.2 mM Asn, 4.31 mM Gln, 7.08 mM Ala. SN: sodium nitrate; AN: NH4NO3. The data show average and standard deviation from two independent experiments.

FIG 2. Effect of nitrogen concentration and illumination on fusarin production by the WT strains FKMC1995 (triangles) and IMI58289 (squares). Mycelia were grown in liquid DGasn media with two asparagine concentrations: 20 mM (high-N medium, continuous lines) or 4.2 mM asparagine (low-N medium, dashed lines), incubated in the dark (A and B) or under 3 W/m² white light (C and D). Fusarins were measured in the culture medium (A and C) and in the mycelia (B and D) at different times during 14-day incubations. The data show average and standard deviation from two independent experiments.

FIG 3. Stability of fusarin in media from batch cultures of the wild type strain FKMC1995 grown for 7 days at 30°C in the dark. Cultures were filtered, centrifuged and the supernatants were incubated at 30°C and 150 rpm either in the dark (black symbols) or under 3 W/m² white light (open symbols). Samples were filtered and centrifuged again, and diluted in water if needed, before measurement at 350 nm. Comparison with data obtained with a similar sample from a wild type IMI58289 culture is shown in the inner box.

FIG 4. Simplified representation of the Clustal alignment of 15 predicted PKS proteins encoded in the *F. graminearum* genome. Conservation of consensus positions is displayed below. PKS10 is the enzyme responsible for fusarin production in *F. graminearum*. The two conserved segments cloned from *fusA*, pksF1 and pksF2, are shown as bars on the upper part of the PKS10 scheme. Domains displayed below the PKS10 scheme were identified with the Simple Modular Architecture Research Tool (SMART): KAS (β-ketoacyl synthase), AT (acyl transferase), DH (dehydratase), MeT (methyltransferase), KR (β-ketoacyl reductase), PP (phosphopantetheine attachment site), C (condensation), AMP.
(AMP binding) and NAD (NAD-binding). The domains located in the long PKS10 carboxy extension, exclusively found in this enzyme, are typical domains of NRPS.

FIG 5. Effect of nitrogen and light on fusA mRNA levels in WT strains FKMC1995 (panels A and B) and IMI58289 (panels C and D). Mycelia were grown in liquid DGasn media with two asparagine concentrations: 20 mM (high-N medium, continuous lines) or 4.2 mM asparagine (low-N medium, dashed lines), incubated in the dark (A and C) or under 3 W/m² white light (B and D). Total RNA was extracted from mycelial samples collected at different times during 14-day incubations. Data are average and standard deviation of 4 measurements from 2 independent experiments.

FIG 6. (A) Map of genomic WT fusA sequence showing the cloned PCR fragments, pksF1 and pksF2 (primers are represented by red arrows); below, map of ΔfusA genome after integration of the disruption construction. Probe for the Southern blot is indicated. At the bottom, domains present in FusA, and the shadow represents the truncated protein expected in the mutants. Yellow boxes represent fusA ORF. E: EcoRI. (B) Southern blot of genomic DNA of the WT and transformants T3 to T7 hybridized with the probe indicated in the upper panel. (C) Absorption spectra of samples extracted from colonies of WT and two representative ΔfusA mutants (T4 and T6) grown on minimal DG medium for 5 days at 30°C in darkness. The 350-nm absorption peak of fusarin is observed in the WT but not in the mutants. The picture shows the appearance of the colonies from the back of the Petri dishes. (D) Pigmentation of mycelia grown in DG liquid medium for 7 days in the dark at 30°C and 150 rpm.

Figure 7. Invasive growth assays. (A-C) Cellophane penetration. Plugs of WT and ΔfusA mutants were inoculated on plates with DGasn medium covered by a cellophane disc and grown for 9 days at 30°C in the dark. (A) Plates after removal of the cellophane membranes from plates of the wild type (WT) and mutant T6. Similar results were obtained with other ΔfusA mutants tested. (B) Cellophane membranes after separation of wild type (left) and T6 (right) mycelia. (C) Magnification of three different sectors with wild type mycelia attached to the cellophane sheet. (D) Tomato fruits and apple slices...
were point-inoculated with 10^6 conidia of WT and ΔfusA mutants, T4 and T6, and incubated at 30°C for 10 or 7 days, respectively.
TABLE 1. Oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Oligonucleotide sequence</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>fusA-1F</td>
<td>5’-AGGGTGTAAGCAGCCATCATG-3’</td>
<td>sequencing</td>
</tr>
<tr>
<td>fusA-1R</td>
<td>5’-CCAAGAAGCTGGAGTACCAC-3’</td>
<td>sequencing</td>
</tr>
<tr>
<td>fusA-2F</td>
<td>5’-CCAGAAACCGATCAAGCGTC-3’</td>
<td>sequencing</td>
</tr>
<tr>
<td>fusA-2R</td>
<td>5’-CAGAAAGGCGTTATGGGAGG-3’</td>
<td>sequencing</td>
</tr>
<tr>
<td>fusA-4F</td>
<td>5’-GCCCGGTAATATCTCAAGCGTTGGC-3’ (KpnI)</td>
<td>cloning</td>
</tr>
<tr>
<td>fusA-4R</td>
<td>5’-GCTTGGGCCACTCCACAGACTGTGC-3’ (ApaI)</td>
<td>cloning</td>
</tr>
<tr>
<td>fusA-5F</td>
<td>5’-GCCCACTAGTGCAGTTACCTGACCTG-3’ (SpeI)</td>
<td>cloning</td>
</tr>
<tr>
<td>fusA-5R</td>
<td>5’-GCATATGCCGGCCGCAGTTCTGATCG-3’ (NcoI)</td>
<td>cloning</td>
</tr>
<tr>
<td>RTfusA-1F</td>
<td>5’-TCGGATATATCGTTTACCGAGATG-3’</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>RTfusA-1R</td>
<td>5’-CTCAGCTGATGCAACGATCAG-3’</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>tub2-F</td>
<td>5’-CCGTTGCTGAAAACACTG-3’</td>
<td>RT-PCR</td>
</tr>
<tr>
<td>tub2-R</td>
<td>5’-CGAGGACCTGGTCGACAAGT-3’</td>
<td>RT-PCR</td>
</tr>
</tbody>
</table>