Prevalence and population structure of *Vibrio vulnificus* on fishes from the northern Gulf of Mexico

Running title: *Vibrio vulnificus* on fishes from the US Gulf Coast

Zhen Tao¹, Andrea Larsen¹, Stephen A. Bullard², Anita Wright³, and Covadonga R. Arias¹*

¹, Aquatic Microbiology Laboratory, Department of Fisheries and Allied Aquacultures, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA

², Aquatic Parasitology Laboratory, Department of Fisheries and Allied Aquaculture, Auburn University, 203 Swingle Hall, Auburn, AL 36849, USA

³, Food Sciences and Human Nutrition Department, University of Florida, 359 Food Sciences and Human Nutrition Building, Gainesville, FL 32611

* Corresponding author

C. Arias

203 Swingle Hall

Auburn University, Auburn AL 36849. USA

e-mail: ariascr@auburn.edu

Phone: (334) 844 9215

Fax: (334) 844 9208
The prevalence of *Vibrio vulnificus* on the external surfaces of fish from the northern Gulf of Mexico was determined in this study. A collection of 244 fish comprising 20 species was analyzed during the course of 12 sampling trips over a 16-month period. The prevalence of *V. vulnificus* was 37% but increased up to 69% in summer. A positive correlation was found between the percentages of *V. vulnificus*-positive fish (Vv+) and water temperatures, while salinity and Vv+ prevalence were inversely correlated. A general linear model (Vv+% = 0.5930 - 0.02818 × salinity + 0.01406 × water temperature) was applied to best fit the data. Analysis of population structure was carried out using 244 isolates recovered from fish. Ascription to 16S rRNA gene types indicated that 157 isolates were type A (62%), 72 (29%) were type B and 22 (9%) were type AB. The percentage of type B isolates, considered to have greater virulence potential, was higher than previously reported in oyster samples from the northern Gulf of Mexico. Amplified fragment length polymorphism (AFLP) was used to resolve the genetic diversity within the species. One hundred and twenty one unique AFLP profiles were found among all analyzed isolates resulting in a calculated Simpson’s index of diversity of 0.991. AFLP profiles were not grouped based on collection date, fish species, temperature or salinity, but isolates were clustered into 2 main groups that correlated precisely with 16S type. The
population of *V. vulnificus* associated with fishes from the northern Gulf of Mexico is heterogeneous and includes strains of great virulence potential.
INTRODUCTION

Vibrio vulnificus is a Gram-negative bacterium commonly found in estuarine and coastal habitats throughout the northern Gulf of Mexico (18, 28). This species is an opportunistic human pathogen that can cause primary septicemia, wound infection, and gastroenteritis in susceptible individuals (48). Gastroenteritis is the more benign but less common clinical syndrome associated with *V. vulnificus* infections that typically courses as a self-limited illness. Conversely, primary septicemia is the most common and severe manifestation of *V. vulnificus*-associated illnesses, having a mortality rate of more than 50% (8, 21, 48). Both gastroenteritis and primary septicemia are associated with the consumption of raw shellfish harboring the pathogen, particularly the Eastern oyster (*Crassostrea virginica*) (48). In addition, *V. vulnificus* can produce severe skin and soft-tissue infections in patients with preexisting wounds who come in contact with the bacterium via seawater or by handling seafood or who sustain an injury while exposed to those sources (22).

Ecological studies have shown a seasonal pattern wherein the number of *V. vulnificus* in oysters, seawater and sediments increased with warmer temperatures (7, 29, 36, 39). Predictably, the incidence of wound infections has been found to be positively correlated with warm temperatures (16, 35). Because nearly all septicemia cases are associated with the consumption of raw Eastern oysters (48), it has been possible to establish a risk assessment model for this
pathogen in the Eastern oyster (15, 51). Predictably, the incidence of wound infections was positively correlated with warm temperatures (16, 35). However, based on epidemiological data, a direct, robustly-documented linkage between the specific source of the pathogen and subsequent manifestation of *V. vulnificus*-associated wound infection has not been well documented in all cases (10, 21, 37, 40).

According to the Cholera and Other *Vibrio* Illnesses Surveillance (COVIS), a *Vibrio* spp. wound infection is recorded as such when the pathogen is cultured from wound and the patient is reported to have sustained a wound or having a pre-existing one while exposed to marine or estuarine water or by physical contact with marine wildlife in the seven days prior illness onset (11). In most clinical cases, patients reported that they had handled seafood prior to the onset of the disease but the data do not specify the kind of handled seafood (e.g., shellfish, crustaceans, or fish) (16, 21, 37). However, the only two documented outbreaks of *V. vulnificus* involving wound infections were attributed to handling farm raised fish in Israel (5) or from injuries sustained prior to or during a fishing contest in Texas (35), resulting in 62 and 5 cases, respectively.

Recreational fishing is a main service industry for the US, generating large revenues for local coastal communities (1). The northern Gulf of Mexico is a top destination for recreational anglers where an estimated >2.8 million anglers participate in more than 7 million fishing trips
annually (30). Although many people recreate in marine and estuarine waters and handle fish there, little information is available regarding the prevalence and distribution of *V. vulnificus* in Gulf of Mexico fishes. DePaola et al. (17) enumerated the density of *V. vulnificus* in the intestine of estuarine fishes of Mississippi and Alabama, reporting higher levels (10³ - 10⁹ CFU/g) in fish intestine than in the surrounding seawater and sediments; suggesting that fish may be reservoirs for *V. vulnificus*. However, it is noteworthy that those authors did not analyze the external surfaces of those fish. Anglers may sustain puncture wounds, lacerations, or bites from live fish or they may be incidentally punctured or cut by dead fish during routine recreational angling activities (e.g., de-hooking fish, filleting) (47). During these handling events, anglers may be exposed to bacteria present in the skin and mucus of their catch.

The purpose of this study was (i) to document the prevalence of *V. vulnificus* on the body surface of a group of estuarine fishes commonly caught by recreational fishermen in the Gulf of Mexico and (ii) to characterize the population structure of *V. vulnificus* in those fishes.

MATERIAL AND METHODS

Sample collection. Sampling began during November 2009 and continued through March 2011 at regular intervals except during December 2009 and January and February 2010. Sampling sites were selected based on accessibility and considered to be representative of public fishing piers in Alabama and Mississippi. Locations included Dauphin Island and Gulf Shores in...
Alabama and Ocean Springs in Mississippi (Figure 1). Table 1 summarizes collection dates, locations and numbers of fish analyzed per collection event. Seawater surface temperature (at 1 m depth) was measured in situ using a mercury-in-glass thermometer (SargentWelch, USA). Salinities were measured with a handheld refractometer (Vital Sine™ Model SR-6). Fishing efforts lasted between 4 and 8 h. Fish were captured using standard baited hooks and standard 20 pound-test monofilament fishing line on standard spinning reels. Hooked fish were deliberately exhausted in ambient water before being raised from the water, secured and suspended in air by the angler grasping the leader base or hook shaft, and then touched only by a second worker donning sterile surgical gloves and equipped with flamed and ethanol-rinsed, heavy-gauge scissors. In coordination with raising the exhausted, immobilized fish from the water, the second worker approached and immediately excised a portion (~1 cm²) of the dorsal fin and placed the excised tissue in the tube containing 10 ml of APW. Hence, no sampled fish was placed on any surface or touched by a second person before each sample was collected by the surgical-gloved worker. Each sample was enriched overnight in APW at room temperature (approximately 25°C). All fish were identified according to Carpenter (9), ordinal classification of fishes follows Nelson (31) and common names for fishes follows Eschmeyer (19).

Bacteriological analysis. Upon arrival to the laboratory, 100 µl of APW cultures were plated onto modified cellobiose-polymyxin B-colistin (mCPC) (49) and thiosulfate citrate bile
salts sucrose (TCBS) (BD, Becton, Dickinson & Co., Franklin Lakes, NJ) agar plates and incubated overnight at 30°C. Three colonies displaying the typical *V. vulnificus* morphology (27) were randomly selected from each selective media and re-isolated on Marine Agar (MA) (BD).

Putative isolates recovered from TCBS and mCPC agar were subjected to colony dot-blot hybridization according to the protocol described by Wright et al. (52). Briefly, putative isolates were cultured in Marine Broth (MB) (BD) overnight in a 96-well microtiter plate and approximately 5 µl of each culture was transferred to mCPC using a multiple channel replicator and allowed to grow overnight at 35 °C. Colonies were lifted onto Whatman® 541 filter papers, followed by hybridization using an alkaline phosphate-conjugated oligonucleotide (5’-GAGCTGTCACGGCAGTTGGAACCA-3’) (DNATechnology A/S, Risskov, Denmark) that recognizes a specific sequence in the *V. vulnificus* hemolysin gene. Positive isolates were stored at -80 °C as glycerol stocks (MB supplemented with 20% glycerol) for further testing.

Ascription of *V. vulnificus* isolates to biotypes. A total of 251 *V. vulnificus* isolates recovered from fish and 8 reference strains (Table 2) were included in the genetic analysis. DNA was extracted from all isolates using standard protocols (38). All *V. vulnificus* isolates were subjected to a multiplex PCR assay for biotype ascription according to Sanjuán et al. (2007) (45). In short, PCR was performed in a 25 µl reaction volume containing 1× PCR buffer, 1.5 mM MgCl2, 200 µM of each deoxynucleoside, 0.1 µM of primer vvhA-F (5’-
CGCCACCCACTTTCGGGCC-3’) and vvhA-R (5’-CCGCGGTACAGGTTGGCGC-3’), 0.2 µM of primer Bt2-F (5’-AGAGATGGAAGAAACAGGCG-3’) and Bt2-R (5’-GGACAGATATAAGGGCAAATGG-3’), 1.5 U GoTaq DNA polymerase and 1 µl DNA template (20 ng), and dH₂O up to 25 µl. Unless stated otherwise, all molecular reagents were purchased from Promega (Madison, WI, USA). PCR reaction was carried out on a Bio-Rad PTC-0200 DNA Engine Cycler (Bio-Rad, Valencia, CA) with cycling profile as following: an initial denaturation step 94°C for 10 min, 35 cycles of 94°C for 30 sec, 60°C for 45 sec and 72°C for 1 min, and a final extension step of 72°C for 10 min. The PCR products were analyzed by electrophoresis on a 2% agarose gel and visualized with UV light by staining with ethidium bromide. Ascription to biotype 1-3 or biotype 2 was based on amplicon(s) size (the method does not discriminate between biotypes 1 and 3).

16S-Restriction Fragment Length Polymorphism (RFLP) typing. 16S *rrn* genotype was determined by RFLP according to Nilsson et al. (32). A 492 bp region of 16S rRNA gene of *V. vulnificus* was amplified using primers UFUL (5’-GCCTAACACATGCAAGTCGA-3’) and URUL (5’-CGTATTACCGCGGCTGCTGG-3’). PCR reaction was performed as described above with the only difference being the annealing temperature of 57 °C. PCR products were verified by 2% agarose gel electrophoresis. Restriction endonuclease digestion of amplified product was performed in 20 µl reaction including 10 µl of amplicon, 2 µl of 10× buffer B, 0.2
µl of acetylated BSA (10 µg/ml), 0.5 µl of AluI (10U/ µl) and sterile dH2O up to 20 µl. Digestion was carried at 37°C for 2 hr after which DNA fragments were separated by electrophoresis on 4% agarose gel. 16S rRNA types were ascribed based on profiles described by Nilsson et al. (33).

Amplified Fragment Length Polymorphism (AFLP). AFLP reactions were carried out as described by Arias et al. (3). Briefly, 100 ng of RNase-treated genomic DNA was double digested with TaqI and HindIII. Following digestion, specific TaqI and HindIII adaptors were ligated to the restriction fragments and subsequently amplified by PCR using primers T000 (5’CGATGAGTCCTGACCGAA-3’) and H00A (5’-GAACCTGCGTACCAGCTTA-3’), selective bases at the 3’end are underlined. HindIII primer (H00A) was labeled with an IR700 fluorochrome from LI-COR (LI-COR, Lincoln, NE, USA). PCR amplifications were performed with the following cycle profile: cycle 1, 60 s at 94°C, 30 s 65°C, and 60 s at 72°C; cycles 2 to 12, 30 s at 94°C, 30 s at annealing temperatures 0.7°C lower than that used for each previous cycle, starting at 64.3°C, and 60 s at 72°C; cycles 13 to 24, 30 s at 94°C, 30 s at 56°C, and 60 s at 72°C. After completion of the cycling program, 5 µl of AFLPBlue Stop Solution (LI-COR) was added to the reaction mixtures. Prior to gel loading, the samples were heated for 5 m at 94°C then rapidly cooled on ice to prevent reannealing. The PCR products were electrophoresed on the NEN Global Edition IR2 DNA Analyzer (LI-COR) following manufacturer’s instructions.
Data analysis. The BioNumerics 6.6 software suite (Applied Maths, Saint Martens-Latem, Belgium) was used for AFLP data analysis. Pairwise similarities were calculated using Pearson correlation coefficient with a 0.5% optimization. Using the similarity matrix as an input, a dendrogram was constructed with arithmetic averages algorithm (UPGMA). The Jackknife group separation method (based on maximal similarities between isolates) was used to assess the fidelity of the clustering analysis. Only bands within the range of 100-530 bp and with at least 8% of minimum profiling were considered in the analysis. Transversal clustering was performed based on the swapped data matrix of profile similarities (fingerprint patterns, horizontal cluster) and characters (band classes, vertical cluster). In transversal clustering, the isolates are grouped by fingerprint patterns (similarities based on band position and intensity, Pearson correlation coefficient), while the character are sorted by means of value of band classes (0 absent and 1 present, Jaccard coefficient). The diversity of the *V. vulnificus* isolates from each fish species was compared by generating rarefaction curves using the software Diversity version 1.4 (Hunt Mountain Software, Athens, GA).

The SAS Software 9.2 version (SAS Institute, Cary, N.C.) was applied to analyze the relationship between environmental factors and the percentages of fish harboring *Vibrio vulnificus* (*Vv*+%). The percentage, namely, is the frequency of fish fin clips that yielded confirmed *V. vulnificus* isolates and was calculated for each sampling event. Pearson correlation
coefficient was used to estimate the relationship between percentages of Vv+ fish and environmental factors (water temperature and salinity). A general linear regression analysis was used to quantify the trends observed between Vv+ fish and variation in salinity and water temperature.

RESULTS

Prevalence of *V. vulnificus* in fish. A collection of 244 fish were randomly sampled during 12 sampling trips. Overall, 90 (37%) individual fish (each represented by an excised dorsal fin sample) yielded *V. vulnificus* isolates, and therefore were considered positive (Vv+) for harboring the bacterium (Table 1). The prevalence of *V. vulnificus* in fish varied between sampling events from 0-78%. *Vibrio vulnificus* was recovered from a large diversity of fish species (Table 3) with prevalence ranging from 0% to 58%. However, the numbers of analyzed fish were not equal across all species due to variable capture success. Because of this limitation, comparing the prevalence of *V. vulnificus* among fish species was not statistically feasible. *Vibrio vulnificus* was documented from any fish species wherein more than 3 individuals of that species were sampled. The order Perciformes was best represented in our sampling, with 63 of 171 (37%) individual fish harboring *V. vulnificus*. Among fishes wherein >10 individuals were analyzed, Atlantic croaker and southern flounder had the highest prevalence at 58% and 53%, respectively, while striped mullet had the lowest at 25%.
Environmental parameters fluctuated as expected during the study, with water temperatures ranging from 16°C to 31 °C and salinity from 8 ppt to 33 ppt (Figure 2).

Percentage of Vv+ fish and salinity were inversely correlated (Pearson’s correlation coefficient $r = -0.91077$, $n=12$, $p<0.0001$). By contrast, a positive correlation was found between Vv+ fish and water temperature (Pearson’s correlation coefficient $r = 0.62481$, $n=12$, $p=0.0298$). General linear models were applied to describe the changes in percentages of Vv+ fish and the environmental factors (salinity and water temperature) analyzed in the study. The linear regression model identified these two environmental factors as having significant effect on the percentage of Vv+ fish (Vv+%). The model with two significant factors that best fits the data is as follows: $Vv+/% = 0.5930 - 0.02818 \times \text{salinity}+ 0.01406 \times \text{water temperature}$. Parameter estimate statistics are included in Table 4 and the surface plot for the model equation is shown in Supplemental Material Figure 1. The coefficient of determination (r^2) for the model was 0.9041, which denotes that 90% of the observed variation is explained by the independent variables.

When an interaction term between salinity and water temperature was introduced to the model, the p-value indicated the interaction term was not significant (p-value= 0.9571). Essentially, this indicates that the number of Vv+ fish was independently affected by salinity and temperature but that both parameters were not linked to each other. In addition, and to test if the collections sites influenced the percentages of Vv+ fish, two dummy variables (S1 and S2) accounting for two of
the collection areas (Dauphin Island and Ocean Springs) were brought into the model. The result
of t-test on parameters S1 (p-value = 0.6413) and S2 (p-value = 0.9199) indicated that site was not
significant.

Population structure of *V. vulnificus* on fish. Out of more than 500 putative *V.
vulnificus colonies recovered from selective media, 270 isolates were positive by colony dot-blot
hybridization and, out of those, 251 were positive by *vvhA*-specific PCR. None of 251 isolates
were Biotype 2 based on multiplex PCR (45). 16S-RFLP typing classified the isolates in 3 types
(16S type A, B and AB) as previously reported (33). According to this classification method, 157
isolates (62%) were 16S type A, 72 (29%) were type B and 22 (9%) were type AB.

Representatives of 16S type A and B were recovered in every sampling, except for March-2010
where only 16S type A isolates were obtained. Figure 3 shows the temporal distribution of 16S
types. The percentage of 16S type B isolates varied from 0% to 50% but no clear correlation
between salinity, water temperature or fish species and 16S type could be inferred from our data.

Eight additional strains, proved to be virulent in a mouse model (50), were included as
references in the AFLP analysis. All but 12 fish isolates were typeable by AFLP (untypeable
isolates consistently produced profiles of weak intensity). AFLP profiles were highly informative
with an average 95 bands per profile ranging from 50 to 700 bp. In order to test reproducibility
of the AFLP method, we performed 3 independent AFLP experiments using 10 fish isolates (data
Based on the variability observed, we selected 90% as our threshold for considering an AFLP type unique as previously described (4). Profiles displaying more than 90% similarity were ascribed to the same AFLP type while similarities lower than 90% indicate different AFLP profiles. A total of 121 unique AFLP types were defined within the 239 isolates of *V. vulnificus* (Table 3). Rarefaction curves were generated for each fish species in where 10 or more isolates from the same fish species had been typed (data not shown). In all cases, the slope of the curves was similar and the number of AFLP types observed linearly increased with the total number of *V. vulnificus* analyzed. These results suggest that the genetic diversity of the isolates was similar in all fishes.

Figure 4 displays a multiscaling dimensional (MSD) analysis of the similarity among all isolates derived from the AFLP cluster analysis. Two non-overlapping clusters could be clearly delineated that correlated with 16S type ascription. Cluster I grouped all 16S type B isolates at 70% similarity (see supplemental material Figure 2), while cluster II consisted of 148 isolates including all 16S type A and type AB at 71% similarity. All *V. vulnificus* isolates shared a similarity of 65% or higher. Cluster I and cluster II were comprised of 36 and 85 unique AFLP types, respectively. Group separation statistics based on Jackknife analysis confirmed the statistically significant correlation between AFLP clusters I and II and 16 types B and A-AB.
Resampling of the data showed a 100% agreement between assigned 16S type B and randomly selected subgroups (for types A and AB the agreement was 96% and 83%, respectively).

Overall, isolates did not cluster based on collection date, geographic location or fish species (data not shown). Moreover, *V. vulnificus* isolates recovered from the same individual fish were not more related to each other than to those isolates from other fish. As an example of how *V. vulnificus* types did not show any specificity for fish specie, Atlantic croaker isolates (the fish species that yielded the most *V. vulnificus* isolates) were distributed across the entire AFLP-based dendrogram (see supplemental material Figure 2).

The band matching analysis revealed a total of 119 polymorphic bands responsible for AFLP cluster ascription out of 123 total observed bands. Transversal clustering identified the AFLP bands, or markers, characteristic of 16S type B isolates. In Supplemental Material Figure 2, the isolates were clustered based on band profiles, while the character was grouped according to values in the band table which reflected band classes of individual band profiles (1 present, 0 absent). In the two-dimensional clustering (data not shown), the isolates and band classes were arranged according to their relatedness. For example, band classes (labeled by band length) 116 bp, 156 bp, 200 bp, 253 bp, 343 bp, 386 bp, and 491 bp were more abundant in Cluster I (16S type B isolates). These band classes are AFLP markers for 16S type B isolates (highlighted area in Supplemental Material Figure 2).
DISCUSSION

Few studies have documented prevalence and distribution of *V. vulnificus* in wild fish (17), despite the fact that wound infections caused by this bacterium have been reported in fishermen worldwide (5, 14, 16, 23). Approximately 30 confirmed cases occurred annually in the Gulf coast region (11), and most of them purportedly linked to exposure to seawater or seafood (16). However, it is not possible to account for how many cases of wound infections were acquired by direct contact with fish based on epidemiological studies. Our data showed that *V. vulnificus* commonly occurred on the fins of fishes from the northern Gulf of Mexico particularly during the summer months. In fact, we were able to isolate *V. vulnificus* at all sampling events from June through September. In addition, this pathogen was isolated from a wide taxonomic and phylogenetic spectrum of fishes, including 16 species representing 15 genera, 8 families, and 6 orders (Table 3). Interestingly, the highest prevalence of *V. vulnificus* was found in two bottom feeder fish (Atlantic croaker and southern flounder), which have been shown to have high densities of this bacterium in their gut (17). Despite being commonly associated with fish, our findings suggest that *V. vulnificus* is a transient member of the fish external microbiota (41) as it was not found on each fish even when several individuals from the same species were collected at the same time.
The occurrence of *V. vulnificus* on fish fins may be higher than that reported here since we used a culture-based method to estimate prevalence. The success rate of recovering environmental bacteria with culture-based methods varies depending on several factors, but it tends to underestimate original densities. For instance, both APW and mCPC have been reported to favor the growth of *V. vulnificus* biotype 1 over biotype 2 (44). Similarly, Chase and Harwood (12) showed that biotype 1 grows better than biotypes 2 and 3 under identical conditions. These factors may have negatively influenced the recovery of biotype 2 in our study. In addition, culture methods disallow for recovery of viable but not culturable (VBNC) forms of *V. vulnificus*, a well-described life stage of this bacterium (34) although the abundance of VBNC forms in the environment is not well known (39). The protocol used herein (enrichment in APW followed by plating onto mCPC) could have preferentially enriched for *V. vulnificus* biotype 1 but, overall, it provided a simple and inexpensive methodology for successfully recovering *V. vulnificus* from fish.

The frequency of detection of *V. vulnificus* in fish was a factor of salinity and temperature. These environmental factors are known to influence *V. vulnificus* abundance and distribution in the marine environment (7, 25, 28). Temperature is positively correlated with *V. vulnificus* presence while salinity is negatively correlated. However, it has been suggested that salinity becomes the main factor influencing the abundance of *V. vulnificus* in oysters when salinities
exceed 30 ppt, irrespectively of water temperature (51). Our field data support this hypothesis since we failed to recover *V. vulnificus* from fish when salinities were higher than 29 ppt even when water temperatures exceeded 18 °C. Based on our data, prevalence of *V. vulnificus* in fish fins was more affected by salinity than by water temperature, and this was particularly noticeable in summer where water temperatures remained over 25°C. Our model accounts for 83% of the variability observed due to salinity and only 7% to temperature. Nevertheless, our model may not be accurate when water temperatures and salinities are outside the ranges observed during our study.

Epidemiological data suggest that most *V. vulnificus* strains must present little risk to the susceptible population because of its abundance in marine samples and the small number of clinical cases observed per year (6, 42, 48). The first marker to be used as an indicator for virulence was a polymorphism present in the 16S rRNA gene that classifies the isolates as 16S type A and 16S type B; in addition, some strains can present both 16S alleles and are classified as 16S type AB. Based on epidemiological data, up to 75% of clinical *V. vulnificus* isolates are 16S type B (this percentage increased up to 94% when clinical fatalities were considered) (33). Similarly, Rosche et al. (43) identified an additional marker referred to as virulence correlated gene (vcg) that can be used to inferred clinical (vcgC) and environmental isolates (vcgE). Both markers, 16S type and vcg, correlate well with each other (46). The majority (62%) of the fish
isolates recovered in this study were classified as 16S type A (up to 71% if we include type AB) but at 29%, the number of type B isolates was higher than expected based on previous studies from the same area (13, 20, 33). Although significant correlations were not noted with any environmental parameter, the highest proportion of type B relative to A and AB was observed during the warmest months, which is consistent with similar observations of *V. vulnificus* populations in Galveston Bay, TX (26).

In terms of strain characterization, AFLP provided a high level of resolution and confirmed the high genetic diversity present in the species with a calculated Simpson’s index of diversity of 0.991 (24). This value is in range with that previously reported by Arias et al. (2) when isolates from a broader geographic area were characterized by AFLP. *Vibrio vulnificus* isolates associated with fish were highly heterogeneous, and we could not determine spatiotemporal- or fish-specific patterns that linked *V. vulnificus* types with environmental parameters or fish species. The inclusion of reference strains (proved to be virulent in a mouse model (50)) further confirmed the lack of uniqueness among fish isolates since some of them shared high similarities with reference strains. This indicates that fish from the nearshore waters of the northern Gulf of Mexico harbor *V. vulnificus* genotypes of great virulent potential for humans.
In summary, this study presents new data on the prevalence of *V. vulnificus* on fish and presents a novel statistical model for predicting its occurrence. Our data indicate that this bacterium has a broad, seasonally-dependent distribution among fishes ranging in coastal areas of the north-central Gulf of Mexico. Potentially pathogenic strains of *V. vulnificus* were recovered from fish, based on 16S ascription and AFLP similarity with clinical strains. Although reported cases of wound infections caused by this pathogen are clearly low proportional to the numbers of anglers, fish captured, and fishing trips taken in the Gulf of Mexico, our distributional data show that fishermen could likely be inoculated by *V. vulnificus* during fish handling and processing, particularly if the fish was captured in an estuary. Finally, the correlation found between the two AFLP-delineated main clusters and 16S types supports the hypothesis stated by Rosche et al. (2010) by which *V. vulnificus* is in the process of diverging into two separate species.

ACKNOWLEDGMENTS

This work was funded by the National Oceanic and Atmospheric Administration (NOAA-NA08NMF4720545), Marine Environmental Science Consortium, Gulf of Mexico Research Institute, and National Science Foundation (NSF DEB-1048523). Zhen Tao is the
recipient of graduate research fellowship funded by the Chinese Scholarship Council and Ocean University of China.
REFERENCES

Oliver JD, Warner RA, Cleland DR. 1983. Distribution of *Vibrio vulnificus* and other lactose-fermenting vibrios in the marine environment. Applied and Environmental Microbiology 45: 985-998

Randa MA, Polz MF, Lim E. 2004. Effects of temperature and salinity on *Vibrio vulnificus* population dynamics as assessed by quantitative PCR. Applied and Environmental Microbiology 70: 5469-5476

Rosche TM, Yano Y, Oliver JD. 2005. A rapid and simple PCR analysis indicates there are two subgroups of *Vibrio vulnificus* which correlate with clinical or environmental isolation. Microbiology and Immunology 49: 381-389

TABLE 1. Temporal and spatial distribution of fishing efforts summarizing number of fish analyzed and number of fish positive for *Vibrio vulnificus* (Vv+).

<table>
<thead>
<tr>
<th>Date (mm/dd/yy)</th>
<th>Sites</th>
<th>No. of fish</th>
<th>No. of Vv+ fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-17-09</td>
<td>OS<sup>a</sup></td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>03-26-10</td>
<td>OS</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>06-02-10</td>
<td>DI<sup>b</sup></td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>06-16-10</td>
<td>DI</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>07-18-10</td>
<td>OS</td>
<td>23</td>
<td>18</td>
</tr>
<tr>
<td>08-18-10</td>
<td>DI</td>
<td>23</td>
<td>6</td>
</tr>
<tr>
<td>09/18/10</td>
<td>OS</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>09/18/10</td>
<td>DI</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>10-16-10</td>
<td>GS<sup>c</sup></td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>11-12-10</td>
<td>OS</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>11-28-2010</td>
<td>OS</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>3-17-2011</td>
<td>GS</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>244</td>
<td>90</td>
</tr>
</tbody>
</table>

^a Ocean Springs, Mississippi
^b Dauphin Island, Alabama
^c Gulf Shores, Alabama
TABLE 2. Reference strains.

<table>
<thead>
<tr>
<th>In this study</th>
<th>Strain<sup>a</sup></th>
<th>Source</th>
<th>Origin</th>
<th>Date</th>
<th>16S<sup>d</sup></th>
<th>vcg<sup>e</sup></th>
<th>Virulence<sup>f</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>CDC 9060-96</td>
<td>Clinical<sup>b</sup></td>
<td>TX</td>
<td>1996</td>
<td>B</td>
<td>C</td>
<td>Virulent</td>
</tr>
<tr>
<td>R-2</td>
<td>CDC 9070-96</td>
<td>Clinical<sup>c</sup></td>
<td>TX</td>
<td>1996</td>
<td>B</td>
<td>C</td>
<td>Virulent</td>
</tr>
<tr>
<td>R-3</td>
<td>ATL-9824</td>
<td>Clinical<sup>c</sup></td>
<td>TX</td>
<td>1994</td>
<td>B</td>
<td>C</td>
<td>Virulent</td>
</tr>
<tr>
<td>R-4</td>
<td>98-640-DP-E9</td>
<td>Oyster</td>
<td>LA</td>
<td>1998</td>
<td>A</td>
<td>E</td>
<td>Virulent</td>
</tr>
<tr>
<td>R-5</td>
<td>99-625 DP-D8</td>
<td>Oyster</td>
<td>TX</td>
<td>1999</td>
<td>AB</td>
<td>E</td>
<td>Virulent</td>
</tr>
<tr>
<td>R-6</td>
<td>246-0058</td>
<td>Clinical</td>
<td>FL</td>
<td>-</td>
<td>A</td>
<td>E</td>
<td>Virulent</td>
</tr>
<tr>
<td>R-7</td>
<td>99-609 DP-A4</td>
<td>Oyster</td>
<td>OR</td>
<td>1999</td>
<td>A</td>
<td>E</td>
<td>Virulent</td>
</tr>
<tr>
<td>R-8</td>
<td>99-537 DP-G7</td>
<td>Oyster</td>
<td>MD</td>
<td>1999</td>
<td>A</td>
<td>E</td>
<td>Virulent</td>
</tr>
</tbody>
</table>

^a For a full description of these strains see Thiaville et al. (2011)

^b Fatal outcome.

^c Patient recovered from infection.

^d Typed according to Nilsson et al. (2003)

^e Typed according to Rosche et al. (2005)

^f Based on Thiaville et al. (2011)
TABLE 3. Occurrence of *Vibrio vulnificus* in fish collected during the study

<table>
<thead>
<tr>
<th>Fish species (order: family), common name</th>
<th>No. Vv+ fish/No. total fish</th>
<th>No. of recovered isolates</th>
<th>AFLP Type†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasyatis sabina (Myliobatiformes: Dasyatidae), Atlantic stingray</td>
<td>1/3 3</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Elops saurus (Elopiformes: Elopidae), ladyfish</td>
<td>3/9 11</td>
<td>6, 36, 62, 64, 79, 95, 100</td>
<td></td>
</tr>
<tr>
<td>Brevoortia patronus (Clupeiformes: Clupeidae), Gulf menhaden</td>
<td>0/1 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dorosoma petenense (Clupeiformes: Clupeidae), threadfin shad</td>
<td>0/1 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bagre marinus (Siluriformes: Ariidae), gafftopsail sea catfish</td>
<td>2/2 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ariopsis felis (Siluriformes: Ariidae), hardhead sea catfish</td>
<td>6/9 16</td>
<td>7, 11, 12, 14, 26, 37, 43, 59, 94, 98</td>
<td></td>
</tr>
<tr>
<td>Opsanus beta (Batrachoidiformes: Batrachoididae), Gulf toadfish</td>
<td>0/1 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mugil cephalus (Mugiliformes: Mugilidae), flathead grey mullet</td>
<td>0/24 16</td>
<td>5, 82, 84, 86, 111, 117, 118</td>
<td></td>
</tr>
<tr>
<td>Strongylura marina (Beloniformes: Belonidae), Atlantic needlefish</td>
<td>0/2 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Prionotus tribulus (Scorpaeniformes: Triglidae), bighead searobin</td>
<td>0/2 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Echeneis naucrates (Perciformes: Echeneidae), live sharksucker</td>
<td>0/2 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Caranx sp. (Perciformes: Carangidae)</td>
<td>0/1 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Selene vomer (Perciformes: Carangidae), lookdown</td>
<td>0/1 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Orthopristis chrysoptera (Perciformes: Haemulidae), pigfish</td>
<td>2/7 9</td>
<td>21, 80</td>
<td></td>
</tr>
<tr>
<td>Archosargus probatocephalus (Perciformes: Sparidae), sheephead</td>
<td>1/6 2</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>Lagodon rhomboides (Perciformes: Sparidae), pinfish</td>
<td>7/23 18</td>
<td>1, 4, 25, 28, 39, 47, 69, 73, 82, 97, 102, 103</td>
<td></td>
</tr>
<tr>
<td>Bairdiella chrysoura (Perciformes: Sciaenidae), silver perch</td>
<td>5/24 13</td>
<td>60, 81, 85, 94, 99, 106, 106</td>
<td></td>
</tr>
<tr>
<td>Cynoscion arenarius (Perciformes: Sciaenidae), sand weakfish</td>
<td>11/28 32</td>
<td>13, 17, 22, 26, 29, 43, 44, 50, 52, 57, 63, 75, 79, 89, 94, 96, 117, 120</td>
<td></td>
</tr>
<tr>
<td>Cynoscion nebulosus (Perciformes: Sciaenidae), spotted weakfish</td>
<td>7/16 23</td>
<td>10, 15, 17, 33, 34, 35, 45, 66, 90, 91, 121</td>
<td></td>
</tr>
<tr>
<td>Leiostomus santhurus (Perciformes: Sciaenidae), spot croaker</td>
<td>0/3 0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Menticirrhus sp. (Perciformes: Sciaenidae)</td>
<td>2/9 8</td>
<td>36, 51, 109</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Count</td>
<td>Typeable Isolates</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Micropogonias undulatus (Perciformes: Sciaenidae), Atlantic croaker</td>
<td>22/38</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Pogonias cromis (Perciformes: Sciaenidae), black drum</td>
<td>0/1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sciaenops ocellatus (Perciformes: Sciaenidae), red drum</td>
<td>3/5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Chaetodipterus faber (Perciformes: Ephippidae), Atlantic spadefish</td>
<td>3/3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Scomberomorus cavalla (Perciformes: Scombridae), king mackerel</td>
<td>0/1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Scomberomorus maculatus (Perciformes: Scombridae), Atlantic Spanish mackerel</td>
<td>0/3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Paralichthys lethostigma (Pleuronectiformes: Paralichthyidae), southern flounder</td>
<td>9/17</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>90/242</td>
<td>251</td>
<td></td>
</tr>
</tbody>
</table>

Only 239 out of 251 isolates were typeable by AFLP.
TABLE 4. Statistical values for the multiple linear regression model.

| Parameter | Estimate | Error | t-value | Pr>|t| |
|-----------------|----------|--------|---------|------|
| Intercept | 0.5930 | 0.1786 | 3.3200 | 0.0089|
| Salinity | -0.0282 | 0.0041 | -6.9500 | <.0001|
| Water Temperature| 0.0141 | 0.0053 | 2.6500 | 0.0266|
FIGURE LEGENDS

Figure 1. North-central Gulf of Mexico showing collecting sites: DI, Dauphin Island, GS, Gulf Shores, and OS, Ocean Springs. MS, Mississippi; AL, Alabama.

Figure 2. Distribution of Vibrio vulnificus-positive fish throughout the study (bars) in relationship to salinity and water temperature.

Figure 3. Distribution of Vibrio vulnificus 16S type A, AB, and B across the study.

Figure 4. Multidimensional Scaling (MDS) representation of the similarity matrix generated by AFLP cluster analysis. Each of 251 V. vulnificus isolates is represented by a dot and the distance between dots represents relatedness obtained from the similarity matrix. Isolates are colored based on origin (fish family or reference strains). Dotted lines highlight the two main clusters observed in the analysis. Cluster I groups all V. vulnificus 16S type A and AB and cluster I groups 16S type B.