Biochemical characterization of a novel L-asparaginase with low glutaminase activity from *Rhizomucor miehei* and its application in food safety and leukemia treatment

Linhua Huang, Yu Liu, Yan Sun, Qiaojuan Yan, Zhengqiang Jiang

Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China

*Corresponding author. Tel.: +86 10 62737689; fax: +86 10 82388508. E-mail addresses: yanqj@cau.edu.cn (Q.J. Yan); zhqjiang@cau.edu.cn (Z.Q. Jiang).

Address for correspondence: Professor Dr. Zhengqiang Jiang

Post Box 294, China Agricultural University, Beijing 100083, China. Tel.: +86 10 62737689; fax: +86 10 82388508. E-mail addresses: zhqjiang@cau.edu.cn (Z.Q. Jiang).

Running title: *Fungal L-asparaginase and its applications*

Abbreviations used: AML, *Astragalus membranaceus* lectin; CHES, 2-(cyclohexylamino) ethanesulfonic acid; IPTG, isopropyl β-D-thiogalactopyranoside; MES, 2-(N-morpholino) ethane sulfonic acid; MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; ORF, open reading frame; PCR, polymerase chain reaction; PI, Prodium Iodide; RACE, rapid amplification of cDNA ends; RmAsnase, *Rhizomucor miehei* L-asparaginase.
A novel fungal L-asparaginase gene from *Rhizomucor miehei* termed *RmAsnase* was cloned and expressed in *Escherichia coli*. Its deduced amino acid sequence shared only 57% identity with those of other reported L-asparaginases. The purified L-asparaginase homodimer had a molecular mass of 133.7 kDa, a high specific activity of 1,985 U/mg, and very low glutaminase activity. *RmAsnase* was optimally active at pH 7.0 and 45 ºC and was stable at this temperature for 30 min. The final level of acrylamide in biscuits and bread was decreased by about 81.6% and 94.2%, respectively, upon treatment with 10 U *RmAsnase* per mg flour. Moreover, this L-asparaginase was found to potentiate a lectin's induction of leukemic K562 cell apoptosis, allowing lowering of the drug dosage and shortening of the incubation time. Overall, our findings suggest that *RmAsnase* possesses remarkable potential for the food industry and in chemotherapeutics for leukemia.

Keywords: L-asparaginase; *Rhizomucor miehei*; Acrylamide; Antileukemia; Lectin
L-asparaginase (L-asparagine amidohydrolase, EC 3.5.1.1) catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia. The enzyme is widely distributed among plants, animals and microorganisms (5, 23, 27). It can be used to reduce the formation of acrylamide in baked goods (2, 8, 18), and its antileukemic capacity has garnered much attention for its application in the treatment of malignancies of the lymphoid system, acute lymphoblastic leukemia and non-Hodgkin’s lymphoma (4).

As acrylamide is carcinogenic to humans, much effort has been invested in identifying possible ways of reducing its levels in foods and thus consumer exposure. The predominant acrylamide-formation pathway is via Maillard reaction between the amino acid asparagine and reducing sugars (21). However, most acrylamide reducing methods limit not only acrylamide formation but also the formation of desirable Maillard products, which can have a negative impact on product taste and appearance (8). Application of L-asparaginase provides a possible alternative method for the mitigation of acrylamide formation that has little effect on the general formation of Maillard products in baked goods (8, 18).

To date, the best known bacterial L-asparaginases are from *Escherichia coli* and *Erwinia carotovora*, and these have been employed for several decades as effective drugs for the treatment of acute lymphoblastic leukemia and leukemia lymphosarcoma (4, 22). However, these L-asparaginases can also have undesirable side effects including anaphylaxis, pancreatitis, diabetes, leucopenia, neurological seizures and coagulation abnormalities that may lead to intracranial thrombosis or hemorrhage (4, 7). These side
effects are considered to arise from allergic responses, and the use of L-asparaginases from different organisms might alleviate the problem (14). Hence, attempts are being made to find novel L-asparaginases or ways of enhancing the chemotherapeutic effect of this drug for the treatment of leukemia.

Though many L-asparaginases have been cloned from bacteria, very few studies have focused on fungal L-asparaginases, which may have fewer adverse side effects when used for the treatment of leukemia or lymphosarcoma (6, 29, 30). In the present work, a novel L-asparaginase gene, \textit{RmAsnase} was successfully cloned from \textit{Rhizomucor miehei} CAU432, a strain of thermophilic fungus that thrives at an optimum temperature of 50 °C (12). The heterologous expression, purification and characterization of this recombinant L-asparaginase are described. We further investigate the application of RmAsnase for the degradation of acrylamide in baked goods and for synergistic treatment of leukemia when combined with \textit{Astragalus membranaceus} lectin (AML), reported in our previous work (9).

MATERIALS AND METHODS

Strains, vectors and reagents. \textit{E. coli} strains DH5\(\alpha\) and BL21 were used for plasmid propagation and as a host for expression of the L-asparaginase gene, respectively. Vector pET-28a (+) was obtained from Novagen (Madison, WI, USA). PrimeSTAR HS DNA polymerase and restriction endonucleases were purchased from TaKaRa (Tokyo, Japan). T4 DNA ligase was from New England Biolabs (Ipswich, MA, USA). A multifunctional DNA purification kit was purchased from BioTeke (Beijing, China). MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), D-acrylamide and the substrates L-asparagine, D-asparagine and L-glutamine were purchased from Sigma Chemical Company (St. Louis, MO, USA). All other chemicals used were of analytical grade unless otherwise stated.

Microorganism and cultivation. The *R. miehei* strain CAU432 used in this study has been deposited in the China General Microbiological Culture Collection Center (web-site: http://www.cgmcc.net/) under CGMCC, accession no. 4967. For isolation of genomic DNA, this strain was cultivated at 50 ºC for 2 days in medium containing (g/l): oat flour, 10; tryptone, 10; yeast extract, 10; MgSO$_4$·7H$_2$O, 0.3; FeSO$_4$, 0.3; CaCl$_2$, 0.3. The mycelia were collected and ground to a fine powder under liquid nitrogen.

Cloning of the L-asparaginase gene and sequence analysis. DNA manipulations were performed as described by Sambrook and Russell (28). Genomic DNA was isolated from *R. miehei* CAU432 using the CTAB method (16). To obtain RNA for reverse transcription polymerase chain reaction (RT-PCR), cells were grown, collected and ground as described above. Total RNA was isolated using the Trizol Kit (Invitrogen, Carlsbad, CA, USA), and mRNA was purified using the Oligotex mRNA Midi Kit (Qiagen, Düsseldorf, Germany). *R. miehei* CAU432 genomic DNA was used as the template for subsequent PCR amplification. To clone the L-asparaginase gene, degenerate primers AsnDF and AsnDR (Table 1) were designed based on the conserved blocks of amino acid residues (FVVLHGTDTM and ETFGAGNAP) of known L-asparaginases using the CODEHOP (Consensus Degenerate Hybrid Oligonucleotide Primers) algorithm.
A putative homologous consensus region of the L-asparaginase gene was amplified using the degenerate primers and analyzed by sequencing the PCR products. PCR conditions were as follows: hot start at 94 °C for 5 min followed by 10 cycles of 94 °C for 30 s, 60 °C for 30 s and 72 °C for 1 min, with a 0.5 °C decrease in annealing temperature per cycle, and then 20 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 1 min. The PCR product was purified, ligated to pMD18-T vector and transformed into competent E. coli DH5α cells.

The full-length cDNA sequence of the L-asparaginase was obtained by 5’ and 3’ Rapid Amplification of cDNA Ends (RACE) using the BD SMART™ RACE cDNA Amplification Kit (Clontech, Palo Alto, CA, USA). The PCR conditions for RACE were: hot start at 94 °C for 5 min, followed by 30 cycles of 30 s at 94 °C, 30 s at 68 °C and 1 min at 72 °C, and a final step of 10 min at 72 °C. PCR was performed with the following primer pairs (Table 1): Asn5’GSP and Universal Primer A Mix for the first PCR, followed by a nested PCR with the primers Asn5’NGSP and Nested Universal Primer A (BD Biosciences, Franklin, NJ, USA) for 5’ RACE. Similarly, 3’ RACE was performed with Asn3’GSP and Universal Primer A Mix, followed by nested PCR with Asn3’NGSP and Nested Universal Primer A. The obtained PCR product was purified, cloned and sequenced. The 5’ and 3’ flanking sequences obtained by 5’ and 3’ RACE were assembled with those of the consensus region to form the full-length cDNA sequence containing the open reading frame (ORF) of the L-asparaginase gene. This L-asparaginase cDNA sequence was subjected to BLAST analysis and deposited in the GenBank nucleotide sequence database under accession no. KF290772. To amplify this
region from the genomic DNA of *R. miehei* CAU432, the same PCR conditions were used with the specific primers, AsnDNAF and AsnDNAR (Table 1). The purified PCR products were ligated with pMD18-T vector and transformed into *E. coli* DH5α cells for sequencing.

Nucleotide and deduced amino acid sequences were analyzed using DNAMAN software (LynnonBiosoft, USA). BLAST analysis was performed at the NCBI server (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The amino acid sequences were aligned using the ClustalW program (ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/). Signal peptide was analyzed by SignalP 4.0 server (http://www.cbs.dtu.dk/services/SignalP/). Search analysis of conserved domain and signature sequences was carried out using ScanProsite (http://prosite.expasy.org/scanprosite/).

Heterologous expression of the gene in *E. coli*. The ORF encoding *RmAsnase* was amplified by PCR from the cDNA of *R. miehei* CAU432 with two primers: RmAsnAF and RmAsnAR (Table 1). *Nde* I and *Xho* I sites (Table 1, underlined) were added to the forward and reverse primers, respectively. PCR conditions were as follows: hot start at 94 °C for 5 min, 30 cycles of 94 °C for 30 s, 55 °C for 30 s and 72 °C for 2 min, followed by one cycle of 72 °C for 10 min. The purified PCR product was digested with *Nde* I and *Xho* I, subcloned into the pET-28a (+) vector, which had been digested with the same restriction enzymes, and transformed into competent *E. coli* BL21 (DE3) cells for protein expression. A single colony of *E. coli* BL21 harboring *RmAsnase* in pET-28a (+) was inoculated into terrific broth (TB) medium containing kanamycin (50 μg/ml) and incubated on a rotary shaker (200 rpm, 37 °C) to an OD₆₀₀ of about 3.0. *E. coli*
BL21 with an empty pET-28a (+) vector was used as a native control. Isopropyl β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM to induce the enzyme expression, and the culture was then grown at 30 °C for 12 h on a rotary shaker at 200 rpm.

Purification of the recombinant L-asparaginase. E. coli cells were harvested by centrifugation and resuspended in Tris-HCl buffer (50 mM, pH 8.5, 150 mM NaCl). Then the cells were sonicated and centrifuged at 10,000g. The clear supernatant was collected and applied to a Ni-IDA column (1 cm × 5 cm) (GE Life Sciences, USA) pre-equilibrated with buffer A (50 mM Tris-HCl pH 8.5, 150 mM NaCl, 20 mM imidazole). Non-adsorbed protein was washed off with 15 column volume (CV) of buffer A followed by 5 CV of buffer B (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 500 mM NaCl, 50 mM imidazole) at a flow-rate of 1.0 ml/min. Bound proteins were eluted with buffer C (50 mM Tris-HCl pH 8.0, 500 mM NaCl, 200 mM imidazole). The protein eluted as a single peak and the fractions showing L-asparaginase activity were pooled, concentrated and buffer-exchanged in 50 mM Tris-HCl (pH 8.0) using a 10-kDa MW-cut-off ultra filtration membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assay was carried out using a 12.5% running gel according to the method of Laemmli (15). After denaturation, the purified enzyme was digested with trypsin and then identified using Matrix-Assisted Laser Desorption/Ionization Time of Flight/Mass Spectrometry (MALDI-TOF/MS).

Enzyme activity assay and protein determination. To determine L-asparaginase activity, 50 μl of suitably diluted enzyme was incubated with 40 mM L-asparagine (or
L-glutamine for L-glutaminase activity) in 200 μl of 50 mM phosphate buffer (pH 7.0) at 45 ºC for 10 min. The reaction was terminated by adding 50 ml 1.5 M trichloroacetic acid solution. The amount of ammonia liberated was determined by addition of Nessler’s reagent (34) and spectrophotometric measurement at 450 nm. One unit of enzyme activity was defined as the amount of enzyme that liberating 1 μmol ammonia per minute under the described conditions. Protein concentration was determined by the method of Lowry et al. (17) using bovine serum albumin as the standard. The specific activity was expressed as U/mg protein.

Molecular mass determination. The denatured RmAsnase was analyzed by SDS-PAGE in a 12.5% gel. The native molecular mass was estimated by Superdex-300 gel-filtration column (1 cm × 40 cm) in 50 mM phosphate buffer (pH 7.4) containing 150 mM NaCl at a flow rate of 0.3 ml/min. The molecular mass standards were: alcohol dehydrogenase (150 kDa), phosphorylase B (97.2 kDa), chicken egg albumin (44.3 kDa) and α-chymotrypsinogen (25.6 kDa).

Biochemical characterization. The optimal pH of RmAsnase was assayed at 30 ºC with 40 mM L-asparagine in 50 mM of the following buffers: citrate buffer (pH 3.0–6.0), MES buffer (pH 5.5–6.5), phosphate buffer (pH 6.0–8.0), Tris-HCl buffer (pH 7.0–9.0) and 2-(cyclohexylamino)ethanesulfonic acid (CHES) buffer (pH 8.5–10.0). The effect of pH on L-asparaginase stability was examined by incubating the purified enzyme in the different buffers at 30 ºC for 30 min. The residual activity of the treated samples was determined by the standard assay as described above. The optimal temperature of the recombinant L-asparaginase was determined by performing the standard assay at
temperatures of 20–80 °C in 50 mM phosphate buffer (pH 7.0). Thermal stability was measured by assessing the residual enzyme activity after incubation of the enzyme at different temperatures for 30 min. The influence of metal ions (2 mM), EDTA, β-mercaptoethanol, and SDS in phosphate buffer (pH 7.0) on L-asparaginase activity of purified RmAsnase was studied at 30 °C for 30 min. The residual activity was assayed using L-asparaginase and comparing with the control (enzyme without the addition of reagents).

Substrate specificity was determined using different compounds containing an amide bond. L-asparaginase activity was determined using 40 mM substrate in 50 mM phosphate buffer (pH 7.0) at 45 °C for 10 min and measuring the amount of ammonium ion using Nessler’s reagent (34). One unit was defined as the amount of enzyme producing 1 μmol of ammonium ion per minute under these conditions. The kinetic parameters were determined by measuring the enzyme activities with six different substrate concentrations in 50 mM phosphate buffer (pH 7.0) at 45 °C for 10 min. \(V_{\text{max}} \), \(K_m \) and \(k_{\text{cat}} \) values were calculated using the Grafit program.

Reduction of acrylamide in baked goods. Acrylamide formation was evaluated in biscuits as described by Anese et al. (1). Briefly, short dough samples were prepared using cake flour (50 g), tap water (12.5 ml), sucrose (12.5 g), shortening (8 g), salt (0.6 g), glucose (0.65 g), sodium bicarbonate (0.25 g) and ammonium bicarbonate (0.5 g). Glucose, sodium bicarbonate and ammonium bicarbonate were dissolved in water, and different concentrations of RmAsnase (in 50 mM phosphate buffer pH 7.0) were added. The rest of the ingredients were mixed in and the dough was kneaded and allowed to
rest for 30 min at 4 °C. The dough was rolled out to 0.3 cm thickness, and 7-cm
diameter circles were cut out and left in a thermostatic cell at 45 °C for 30 min. The
samples were baked in a 260 °C oven for 10 min.

Bread was prepared following the procedure described by Jiang et al. (11). The
bread dough consisted of wheat flour (150 g), dry yeast (3.0 g), salt (2.25 g), sugar (7.5
g), vegetable oil (4.5 g) and water (90 ml). The purified RmAsnase (in 50 mM
phosphate buffer pH 7.0) was incorporated into the flour at levels of 0.5–100 U/g flour.
Then the dough was mixed for 4 min, allowed to rest for 10 min, divided (into 50-g
portions), kneaded, and allowed to rest again (15 min). Each dough portion was rolled
out and proofed to three times its initial volume (at 40 °C, 80% relative humidity).
Loaves were baked at 200 °C for 15 min.

All samples were homogenized and defatted with hexane. D-acrylamide was added
as an internal standard into 2 g of the defatted samples. Acrylamide from each sample
was extracted by acetonitrile and concentrated by vacuum evaporation. This extract was
then dissolved in deionized water and analyzed by gas chromatography (GC) for
acrylamide using a C18 column with flame ionization detector and helium gas as the
carrier.

Cell culture, viability and apoptosis assay. Human leukemia cell lines Jurkat,
U937 and K562 were obtained from the Chinese Academy of Medical Sciences
(Beijing). Cells were maintained in RPMI 1640 medium containing 10% of fetal calf
serum, 100 U/ml penicillin and 100 µg/ml streptomycin. Cell cultures were incubated at
37 °C in a humidified atmosphere with 5% CO2. Cell viability was measured by the
MTT method as described previously, with some modifications (9). Briefly, cells were dispensed in 96-well flat-bottom microtiter plates at a density of 1×10^5 cells/ml. After 24 h incubation, they were treated with different concentrations of RmAsnase alone or in combination with AML for the indicated time periods. Cell apoptosis was analyzed using annexin V labeling and propidium iodide (PI) staining followed by flow cytometry. After incubation, cells were treated ahead of the flow cytometric studies (Becton-Dickinson, Franklin, NJ, USA) following a previously described method (9).

RESULTS

Cloning and sequence analysis of an L-asparaginase gene from R. miehei. Based on the conserved amino acid sequences of known L-asparaginase genes, a 622-bp fragment was amplified with degenerate primers AsnDF and AsnDR using genomic DNA from R. miehei CAU432 as the template. The 5' and 3' flanking regions of the fragment which were approximately 1,000 and 1,600 bp, respectively, were obtained by RACE. The two flanking regions were then assembled with the core fragment to generate a 2,156-bp cDNA sequence containing a putative full-length ORF of 2,049 bp. The translated protein contained 682 amino acid residues with a predicted molecular mass of 75,316 Da and a theoretical pI of 6.76. The nucleotide and deduced amino acid sequences of the full-length cDNA and flanking regions of the L-asparaginase gene RmAsnase are shown in Fig. 1. Comparison of the cDNA with the genomic sequences revealed six introns in the coding region. The N-terminal region contained no predicted signal peptide.
Expression and purification of the recombinant L-asparaginase. RmAsnase was expressed in *E. coli* BL21 as a soluble intracellular enzyme. The comparative analyses of SDS-PAGE and asparaginase activity are shown in Table S1 and Fig. S1, respectively. The specificity activity of the crude enzyme from the *E. coli* with empty vector was found to be only 8.8 U/mg. The asparaginase activity from the empty vector was negligible compared to that of the crude enzyme from the *E. coli* BL21 harboring RmAsnase in pET-28a (+) vector (780 U/mg). RmAsnase was purified 2.6-fold by Ni-IDA chromatography with an overall yield of 48.8% and a specific activity of 1,985 U/mg (Table 2). The purified enzyme migrated on SDS-PAGE as a single, homogeneous band of 72-kDa which matches with its predicted molecular mass of 75,316 Da (Fig. 2). The native molecular mass of RmAsnase was determined by gel filtration to be 133.5 kDa, indicating that the enzyme is a homodimer (data not shown). Eleven internal peptides from MALDI-TOF/MS were randomly selected from RmAsnase which are as follows: TTAHVPIYDNAEVEQLRADDRDEMLAPDFS, HTPEHYIPLPYNLYALAAR, FHDPSHGFLSRSQENHADGVTGKEDFTR, TVIITGSQVPLETVR, WPLVLRPHTIAK, LFPGINETVRAFLPQGKVLETYGAAPAR, EACDRGVVIVNCT, QCRRGLVTDSYATGR, SQLLLDIFANISAR, DGHIAIVEYLLHNASVHRDRW, GHTPLFVAVGKHAQVVSMLRAGAHLSVNEQDSMPAWLK, IALEAGWPVN, WAEPVEGR and WGFIIHK. These peptide sequences have matched with the deduced amino acid sequence of RmAsnase, confirming that the purified enzyme was indeed RmAsnase. The quantitative results and characterization of RmAanase...
were carried out with electrophoresis grade enzyme.

Biochemical characterization of RmAsnase. RmAsnase displayed maximal L-asparaginase activity at pH 7.0 in 50 mM sodium phosphate buffer (Fig. 3a). It was fairly stable over a pH range of 4.0–8.0, retaining more than 80% of its activity (Fig. 3b). The enzyme showed optimal activity at 45 °C (Fig. 3c), and no activity loss was detected after incubation of the enzyme at 45 °C for 30 min (Fig. 3d). Sn²⁺, K⁺, Ni²⁺ and Na⁺ had only slight inhibitory effects on RmAsnase activity (reducing it to 87, 92, 85 and 91%, respectively). Whereas Mg²⁺ (28%), Ba²⁺ (30%), Cr²⁺ (37%), Fe³⁺ (41%), Ag⁺ (42%), Co²⁺ (69%), and especially Cu²⁺ (13%), Zn²⁺ (17%), and Hg²⁺ (24%) strongly inhibited the L-asparaginase activity. Ca²⁺ and Mn²⁺ significantly enhanced RmAsnase activity (to 144% and 183%, respectively), in contrast to their inhibition of many other L-asparaginases (14, 20). Both SDS (56%) and β-mercaptoethanol (55%) were strong inhibitors, as was EDTA (24%), suggesting that the enzyme is dependent on metal ions or disulfide bonds for its activity.

To demonstrate the substrate specificity of RmAsnase, its enzymatic activity was determined in terms of ammonium liberated from several relevant amide compounds. The enzyme showed highest specificity for L-asparagine (1985 U/mg), but negligible activity with both D-asparagine (22 U/mg) and L-glutamine (36 U/mg) as substrates. The V_{max}, K_m and k_{cat} values of RmAsnase for L-asparagine were $3380.0\pm133.4 \mu\text{mol/min mg}$, $0.0253\pm0.0024 \text{mg/mL}$, $676\pm26.7 \text{s}^{-1}$ (data not shown).

Reduction of acrylamide formation in baked goods by RmAsnase. Applied trials were performed in biscuits and bread to evaluate RmAsnase's potential as an additive.
for general acrylamide mitigation in baked goods (Fig. 4). A clear, dose-dependent reduction in acrylamide levels was observed in both final products following addition of RmAsnase. More than 40% of the acrylamide in bread was eliminated when a low concentration of RmAsnase was added (0.5 U/g flour). Over 90% acrylamide formation was eliminated when the concentration of RmAsnase was increased to 10 U/g flour. In the biscuits, samples treated with the same amounts of RmAsnase showed only approximately 15% and 80% decreases in acrylamide, respectively.

Inhibition of leukemia cell proliferation by RmAsnase alone or combined with AML. The cytotoxicity of RmAsnase to several human leukemia cell lines was demonstrated by MTT assay. Of the three cell types tested, the antiproliferative activity of RmAsnase, after 48 h incubation, was most efficient against Jurkat cells (more than 60%) (Fig. 5a). Clinically, the high dosages and long periods involved in L-asparaginase treatments eventually cause hypersensitivity, anaphylaxis, allergic reactions and other toxic reactions (32, 35). We therefore performed a multidrug trial with AML, a plant lectin from *Astragalus membranaceus* in this study. As shown in Fig. 5b, AML maintained its significant antiproliferative activity in K562 cells when combined with RmAsnase. In fact, these two proteins showed a synergistic effect, with stronger proliferation inhibition than either drug alone against Jurkat and U937 cells.

Apoptosis induced by synergistic treatment with RmAsnase and AML. To delineate the mechanism governing the synergistic antiproliferative activity of RmAsnase and AML, apoptosis of K562 cells treated by both of these compounds was determined by flow cytometry. As shown in Fig. 6a, incubation with 5 and 20 µg/ml
AML, resulted in 9.3% and 28.9% apoptotic cells, respectively, suggesting a dose-dependent effect. Although there were very few apoptotic cells when only RmAsnase was added, the apoptotic cell ratio was 20.8% in the cells treated with 5 µg/ml AML and 10 mU/ml RmAsnase. Moreover, most of the apoptotic cells in the early stages of the co-incubation emerged 24 h earlier than those in the treatment with AML alone (Fig. 6b). It is therefore suggested that RmAsnase not only allows to decreasing the dosage of AML, it also accelerates the induction of K562 cell apoptosis.

The effect of RmAsnase on caspase-dependent AML-induced apoptosis was further investigated using a pan-caspase inhibitor, z-VAD-fmk. The inhibitions of apoptosis induced by AML only or by AML combined with RmAsnase was very similar, suggesting that RmAsnase dose not change the mechanism of intracellular apoptosis which is mainly induced by AML (Fig. 6c).

DISCUSSION

In the present study, a hypothesized L-asparaginase gene, *RmAsnase*, was successfully cloned from *Rhizomucor miehei*. Based on BLAST homology search, the deduced amino acid sequence of RmAsnase showed 57% identity to the L-asparaginase from *Vibrio cholerae* (accession no. 2OCD_A), and 56% identity to the L-asparaginases from *E. coli* (2P2D_A) (37) and *Yersinia pestis* (3NTX_A), all of which are type I bacterial L-asparaginases. The putative conserved domains of the amino acid sequence of RmAsnase could be divided into two parts including L-asparaginase and ankyrin repeats (ANK), which showed domain architectures similar to those of an asparagine
amidohydrolase from the filarial parasite *Dirofilaria immitis* (Q9U518) (33) and an L-asparaginase from the filamentous fungus *Neurospora crassa* (XP_961114).

According to the previous studies, two isozymes of L-asparaginase have been produced by *Escherichia coli*. Type I L-asparaginase (EcA I) from *E. coli* is located in the cytosol, whereas type II (EcA II) is located in the periplasmic region of the bacteria (31). Actually, L-asparaginase I (EcA I) is a dimer of two intimate dimers, and L-asparaginase II (EcA II) is a tetramer, of identical subunits of 35.6 kDa (31, 37). Both of the two L-asparaginases were inactive as a homodimer of 135 kDa. Unlike bacterial L-asparaginases which are found as tetramers of identical subunits with molecular masses in the range of 140–160 kDa, the purified RmAsnase homodimer's molecular mass was higher than that of some other fungal L-asparaginases (5, 8). The specific activity of RmAsnase was similar to that of L-asparaginase from *Pectobacterium carotovorum* (2,020.9 U/mg) (14), but much higher than those of most bacterial and fungal L-asparaginases (10, 13, 24, 30). The optimum pH and temperature of RmAsnase are similar to those reported for many L-asparaginases (13, 19, 23). Moreover, the enzyme showed negligible activity with L-glutamine as substrates. Contamination with glutaminase activity is one of the causes of L-asparaginase toxicity to leukemia patients (4, 18), with only a few reported L-asparaginases showing little or no such activity (14, 18, 20). In view of the biochemical characterizations, RmAsnase could potentially serve for acrylamide reduction when added to baked goods or as an alternative drug for the treatment of leukemia (13, 30).

A clear, dose-dependent reduction in acrylamide levels was observed in the final
products of bread and biscuits following addition of RmAsnase. However, it might have been due to the different processing protocols, particularly the different incubation times for these two baked goods, resulting in RmAsnase being more efficient at reducing acrylamide content in bread than biscuits. Nevertheless, RmAsnase's ability to reduce acrylamide formation in biscuits was equivalent to that of commercial L-asparaginase (1) or L-asparaginase from Aspergillus oryzae (8).

Unlike normal cells, malignant cells are unable to synthesize endogenous L-asparagine, and lack of this amino acid leads to their death (22). The general medical approach to leukemia therapy is therefore based on this metabolic defect in L-asparagine synthesis in some malignant cells (3). Thus L-asparaginase has garnered interest for its beneficial pharmacological effect in the treatment of some types of human leukemias. In particular, L-asparaginases obtained from bacteria such as E. coli and Erwinia chrysanthemi have been used clinically to treat leukemia for several decades now (4, 22). However, the L-asparaginases from these two bacterial species have side effects, which are attributed in part to the presence of L-glutaminase activity or allergic responses to these sources (14, 18). Thus L-asparaginases with low L-glutaminase activity or from different sources are of interest (4, 25). RmAsnase, the fungal L-asparaginase from R. miehei, showed antiproliferative activity against cells from several human leukemia cell lines, and displayed very low L-glutaminase activity. Thus, RmAsnase may also be useful in leukemia treatment as an alternative to bacterial L-asparaginases (14, 18, 23-25).

Used alone, L-asparaginase is an effective drug for leukemia, especially acute
lymphoblastic leukemia. However, resistance to the drug and side effects are observed in relapsed patients (22). Thus agents that enhance the effect of L-asparaginase or overcome chemoresistance to the drug are needed for clinical treatment. In our previous work, a plant lectin from *Astragalus membranaceus* (AML) was shown to induce caspase-dependent apoptosis in human K562 cells (9). Here, we show that the fungus-originated RmAsnase not only allows decreasing the AML dosage, but also accelerates apoptosis of K562 cells. This result is similar to that obtained with another natural anticancer ingredient, curcumin, which also induces caspase-dependent apoptosis in leukemia cells and potentiates the antitumor activity of L-asparaginase (35).

Some other drugs studied in multiagent regimens with L-asparaginases include vincristine, prednisone and lomustine (26, 32, 36). To the best of our knowledge, this is the first trial to evaluate the antileukemia capacity of L-asparaginase combined with a lectin in vitro. Our results may help develop a new type of drug for application in combination chemotherapy for leukemia.

In conclusion, a novel fungal L-asparaginase gene from *R. miehei* (*RmAsnase*) was cloned and expressed in *E. coli*. The homodimer enzyme exhibited high specific activity and thermal and pH properties conducive to its use to reduce acrylamide levels in baked goods. RmAsnase displayed very low L-glutaminase activity and showed significant antiproliferative activity against several types of human leukemia cells. This L-asparaginase was further found to lessen the drug dosage and accelerate the apoptosis induced by a lectin in K562 cells when the two were combined. Thus RmAsnase is suggested to have great potential for the food industry and for pharmaceutical
exploitation in the treatment of leukemia.

ACKNOWLEDGEMENTS

This work was financially supported by the National Science Fund for Distinguished Young Scholars (no. 31325021) and the Chinese Universities Scientific Fund (no. 2012YJ107).

REFERENCES

5. Eisele N, Linke D, Bitzer K, Na Amnieh S, Nimtz M, Berger RG. 2011. The first

33. Tsuji N, Morales TH, Ozols VV, Carmody AB, Chandrashekar R. 1999. Identification of an asparagine amidohydrolase from the filarial parasite Dirofilaria...

FIGURE LEGENDS

FIG 1 Nucleotide and deduced amino acid sequences of the full-length cDNA and flanking regions of *Rm*Asnase. The translational initiation codon, ATG and termination codon, TAA are boxed. Six intron sequences are shown in lower case letters with dotted underlining. A poly (A+) is double underlined. Conceptual translation of the ORF to the amino acids is shown in one-letter code below the respective codon. The asterisk indicates the stop codon.

FIG 2 SDS-PAGE analysis of RmAsnase expressed in *E. coli*. Lane M, low molecular mass protein markers; lane 1, crude lysate; lane 2, purified RmAsnase.

FIG 3 Optimum pH (a), pH stability (b), optimum temperature (c) and thermostability (d) of RmAsnase. The influence of pH on l-asparaginase activity was determined at 45°C using different buffers: citrate (◊), MES (■), phosphate (▲), Tris-HCl(×), CHES(○). The temperature profile was measured at different temperatures in 50 mM phosphate buffer (pH 7.0). Data represent mean ± SD (n = 3).

FIG 4 Reduction of acrylamide content by RmAsnase in baked biscuits (a) and bread (b). Biscuits or bread dough was pretreated with different amounts of RmAsnase or equal amounts of phosphate buffer (50 mM, pH 7.0) as a control. Data represent mean ± SD (n = 3).

FIG 5 Antiproliferative activity of RmAsnase towards leukemia cells and synergistic treatment with RmAsnase and AML. Cells were incubated with different concentrations of RmAsnase for 48 h (a), or treated with 40 mU/ml RmAsnase alone or combined with 40 µg/ml AML for 48 h (b). Cell viability was checked by MTT assay. Results are
FIG 6 Mechanism of enhancement of antiproliferative activity of AML by RmAsnase in K562 cells. (a) Apoptosis of K562 cells was induced by a lower dose of AML when combined with RmAsnase. (b) Apoptosis of K562 cells induced by AML was accelerated by RmAsnase. (c) Effect of caspase inhibitor on the synergistic induction of apoptosis of K562 cells by AML or AML combined with RmAsnase. A20/5: treatment with AML (20 or 5 µg/ml); R40/10: treatment with RmAsnase (40 or 10 mU/ml). A5R10: co-treatment with AML (5 µg/ml) and RmAsnase (10 mU/ml). Apoptosis was measured using a flow cytometer. Results are representative of experiments performed in triplicate.
TABLE 1

Primers used in this study.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Primer sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsnDFa</td>
<td>TCGTCCTGCACGGCanacngayacnatg</td>
</tr>
<tr>
<td>AsnDRa</td>
<td>CGTTGCGGCGGaeaangtyc</td>
</tr>
<tr>
<td>Asn5’GSP</td>
<td>AAGACTACCCTTGCAAAGGAGGTG</td>
</tr>
<tr>
<td>Asn3’GSP</td>
<td>TGCAAGTGCGCTTAGCTTCATG</td>
</tr>
<tr>
<td>Asn5’NGSP</td>
<td>AAGGAGGTGCGAGAAAGCG</td>
</tr>
<tr>
<td>Asn3’NGSP</td>
<td>GCGCTTAGCTTCATGTTGGAGGA</td>
</tr>
<tr>
<td>AsnDNAF</td>
<td>ATGGATTCGAGAACGACTGCTCAT</td>
</tr>
<tr>
<td>AsnDNAR</td>
<td>TTAATTCTTTCTTAGAAGTTGCTATCTC</td>
</tr>
<tr>
<td>RmAsnARb</td>
<td>GGGTTTCATATGGTAGTTGAGAAGCACTGCT</td>
</tr>
<tr>
<td>RmAsnARb</td>
<td>ATTCGCTCGAGTTCTTTCTAGAAGTTGTC</td>
</tr>
</tbody>
</table>

a N=A/T/C/G , Y=C/T;

b Restriction enzyme sites incorporated into primers are underlined.
<table>
<thead>
<tr>
<th>Purification step</th>
<th>Total activity (U)</th>
<th>Protein (mg)</th>
<th>Specific activity (U/mg)</th>
<th>Purification factor (fold)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude enzyme</td>
<td>43,506.4</td>
<td>35.8</td>
<td>779.7</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Ni-IDA</td>
<td>21,237.4</td>
<td>10.7</td>
<td>1,984.8</td>
<td>2.6</td>
<td>48.8</td>
</tr>
</tbody>
</table>

Enzymatic reactions were carried out for 10 min at 45 °C in 50 mM phosphate buffer (pH 7.0) as described in the text.