Use of silicate minerals for pH control during reductive dechlorination of chloroethenes in batch cultures of different microbial consortia

Elsa Lacroixa,b, Alessandro Brovellia, D. A. Barrya, and Christof Holligerb,\ast

Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), aEcological Engineering Laboratory and bLaboratory for Environmental Biotechnology, Lausanne, Switzerland.

Running title: Silicate minerals for pH control during bioremediation

\ast Corresponding author. Mailing address: EPFL ENAC IIE LBE, Station 6, 1015 Lausanne, Switzerland. Phone: 41 21 69 34724. Fax: 41 21 69 34722. E-mail: christof.holliger@epfl.ch.

† Supplemental material for this article may be found at http://aem.asm.org/.
Abstract

In chloroethene-contaminated sites undergoing *in situ* bioremediation, groundwater acidification is a frequent problem in the source zone, and buffering strategies have to be implemented to maintain the pH in the neutral range. An alternative to conventional soluble buffers is silicate mineral particles as a long-term source of alkalinity. In previous studies, the buffering potential of these minerals has been evaluated based on abiotic dissolution tests and geochemical modeling. In the present study, the buffering potential of four silicate minerals (andradite, diopside, fayalite and forsterite) was tested in batch cultures amended with tetrachloroethene (PCE), and inoculated with different organohalide-respiring consortia. Another objective of this study was to determine the influence of pH on the different steps of PCE dechlorination. The consortia showed significant differences in sensitivities towards acidic pH for the different dechlorination steps. Molecular analysis indicated that *Dehalococcoides* spp. that were present in all consortia, were the most pH sensitive organohalide-respiring guild members compared to *Sulfurospirillum* spp. and *Dehalobacter* spp. In batch cultures with silicate mineral particles as pH buffering agents, all four minerals tested were able to maintain the pH in the appropriate range for reductive dechlorination of chloroethenes. However, complete dechlorination to ethene was only observed with forsterite, diopside, and fayalite. Dissolution of andradite increased the redox potential and did not allow dechlorination. With forsterite, diopside and fayalite, dechlorination to ethene was observed but at much lower rates for the last two dechlorination steps compared with the positive control. This indicated an inhibition effect of silicate minerals and/or its dissolution products on reductive dechlorination of *cis*-DCE and VC. Hence, despite the proven pH buffering potential of silicate minerals, compatibility with the bacterial community involved in *in situ* bioremediation has to be carefully evaluated prior to their use for pH control at a specific site.

KEYWORDS: Groundwater acidification, *in situ* bioremediation, buffer injection, silicate minerals, organohalide respiration, chlorinated solvents
Introduction

Chlorinated ethenes such as tetrachloroethene (PCE) and trichloroethene (TCE) are among the most common groundwater contaminants in industrialized countries because of their extensive use and their persistence in the environment (1). Among the various decontamination strategies developed in the past decades, *in situ* bioremediation has been recognized as a cost effective and viable option and has been successfully applied for remediation of sites contaminated with chlorinated solvents (2, 3). This technique relies on the activity of organohalide-respiring bacteria (OHRB) that reduce chlorinated ethenes stepwise to the innocuous end-product ethene, an anaerobic microbial process called organohalide respiration (OHR) (4).

In some situations, *in situ* bioremediation efficiency is reduced by the acidification of groundwater due to substrate fermentation and OHR (3, 5-7). The extent of groundwater acidification is related to the amount of substrate transformed and to the natural buffering capacity of the soil. Due to the larger mass of pollutant present, acidification is more likely to occur in the vicinity of the source zone of chlorinated ethenes (8, 9). The tolerance of OHRB to low pH has been studied for pure cultures (10-18) and some consortia containing OHRB (19, 20). It has been shown that OHRB are inactivated under acidic conditions (pH < 5) and therefore pH buffer amendments are required when aquifer pH is below 5 or when the soil buffering capacity is insufficient (3, 9, 21). In field applications, the most common method used for pH adjustment is injection of a buffering solution such as sodium bicarbonate or sodium carbonate (21). In laboratory studies, the use of KH₂PO₄ buffer encapsulated in a pH-sensitive polymer has successfully been tested for *in situ* pH control (22, 23). However, a field trial has shown that this method had only a short-term effect of a few days (24). Similarly, injection of buffering solution requires constant monitoring and frequent injection as alkalinity can be rapidly consumed. Moreover, several studies reported that a stable pH was difficult to achieve when this strategy was employed. A study conducted by the Environmental Security Technology Certification Program on pH control with sodium bicarbonate and carbonate solutions has shown that, in some wells, the pH was above 9.0 while locally the pH dropped below 5.5 (21). In addition, a recent study by Delgado et al. (25)
has shown that a high bicarbonate concentration can increase hydrogen demand because it stimulates competing H₂-consuming processes such as methanogenesis and homoacetogenesis. More recently, the use of sodium formate as an electron donor has been proposed to minimize acidification (26, 27). Formate dehydrogenation produces sodium bicarbonate which participates in acidity neutralization and does not produce acetic acid (26). However, because formate dehydrogenation is a slow process, pH buffering provided by formate could be insufficient in the case of high dechlorination rates (27).

To overcome the limitation of traditional buffering techniques, the use of ground silicate minerals as a passive pH control system has recently been investigated (28, 29). Silicate minerals are the most common rock-forming minerals (30) and can be easily found worldwide both in natural environments and as by-products of industrial processes. In natural systems, silicate weathering represents the predominant buffering mechanism after carbonate weathering (30). When silicate minerals dissolve, they release cations (K⁺, Na⁺, Ca²⁺, Mg²⁺, Al³⁺ and Fe²⁺) and increase pH. Silicate solubility and dissolution rates are pH dependent, both increasing with decreasing pH. Because their dissolution is relatively slow in comparison to carbonate minerals, silicate minerals have the potential to act as long-term sources of alkalinity (31). As a result of these characteristics, silicate minerals are potentially good buffering agents to maintain pH in the neutral range. Their dissolution is triggered by acidity production and the risk of pH overshooting is prevented (31). Wollastonite (CaSiO₃) powder, a fast dissolving calcium silicate, is commonly used in agronomy as a liming agent (32, 33), but utilization of silicates for remediation of contaminated water bodies and groundwater has rarely been investigated. Addition of wollastonite to an anthropogenically acidified stream was found highly effective in raising pH and the acid-neutralizing capacity of the stream water (34, 35). Other studies have demonstrated the buffering potential of silicate minerals such as nepheline (Na₃Al₄Si₄O₁₆) and wollastonite for contaminated water from mining activities (36, 37).

The buffering capacity of ground silicate minerals for pH control during groundwater remediation has previously been demonstrated by geochemical modeling (28) and abiotic mineral dissolution experiments (29). According to these studies, four silicate minerals (andradite, diopside, fayalite and
forsterite) have promising groundwater buffering capacity. In the present study, the use of powders of these silicate minerals as buffering agent in actively dechlorinating batch cultures of consortia containing different OHRB has been tested. Special emphasis was put on the effect of pH and the presence of a silicate mineral buffer on each step of PCE dechlorination to ethene.

Materials and Methods

Chemicals

All chemicals were analytical grade and used without purification. Tetrachloroethene (PCE) (99%) and n-hexadecane (99%) were obtained respectively from Acros Organics and Merck. All gases (N₂, CO₂, H₂) were supplied by Messer Schweiz AG, Switzerland.

Organohalide-respiring consortia

The five organohalide-respiring consortia used in this study, SL2-PCEa, SL2-PCEb, AQ-1, AQ-5 and PM originated from chlorinated ethene-contaminated aquifers. They were enriched and maintained in the laboratory for several years. Details of the enrichment process were described by Szynalski (38) for SL2-PCEa, SL2-PCEb, AQ-1 and AQ-5 and by Yu (39) for the PM culture. The consortia AQ-5, SL2-PCEa and PM have the ability to dechlorinate PCE to ethene completely. SL2-PCEb is a subculture of SL2-PCEa and dechlorinates PCE only to cis-DCE. Consortium AQ-1 dechlorinates cis-DCE to ethene but cannot grow on PCE or TCE.

Effect of pH on the OHR rate

The influence of pH between 5 and 7.5 on the OHR rates was determined for the five consortia described above. Duplicate batch tests were conducted in 500-ml serum bottles containing 200 ml of anaerobic growth medium. For each consortium, six different pH values were tested from pH 5 to pH 7.5 with a stepwise increment of 0.5 pH units. Tests at pH > 7.5 were not possible due to precipitation of calcium phosphate, which made phosphate unavailable for bacterial growth and activity. The
anaerobic growth medium used was similar to one described previously (17) with the following modifications: NaH₂PO₄·2H₂O and NaHCO₃ were replaced by zwitterionic buffers: 2-(N-morpholino)ethanesulfonic acid (MES) at 100 mM for pH 5 to 6.5 and 3-(N-morpholino)propanesulfonic acid (MOPS) at 100 mM for pH 7 to 7.5. The initial pH was adjusted by addition of anaerobic NaOH or HCl solution. The bottles were sealed with Viton rubber stoppers and the gas phase of the bottles was replaced with 100% hydrogen (for SL2-PCEa and SL2-PCEb) or 100% of nitrogen (for AQ-1, AQ-5 and PM) using a gas exchange system. To provide the chloroethenes, a two-liquid phase system (40) was used with PCE or cis-DCE dissolved in hexadecane. This system allows a constant delivery of the chlorinated ethenes from the hexadecane to the aqueous phase and maintains the concentration of the chlorinated ethene constant and below the toxicity limit. The nominal chloroethene concentration in the medium (i.e. the amount of chlorinated ethene present in the hexadecane phase divided by the total volume of aqueous phase) was 5 mM, except for consortium PM where it was 1.25 mM. For all consortia, the concentration of PCE dissolved in hexadecane was 100 mM corresponding to a concentration in the aqueous phase of 0.02 mM. Acetate (final concentration 2 mM) was added as a carbon source for SL2-PCEa and SL2-PCEb from concentrated stock solutions. Consortia AQ-1 and AQ-5 were amended weekly with an electron donor mixture of ethanol, propionate and butyrate (0.66 mM each per week) and consortium PM with 1.2 mM lactate per week. The cultures were inoculated with 8 ml of pre-culture and incubated at 30°C in the dark without agitation. Measurements of pH and the chloroethene concentrations were performed on a regular basis. Finally, experimental observations were fitted to the equation:

$$R_{D,i} = r_{\text{max},i} f(\text{pH}),$$

(1)

where $R_{D,i}$ is the degradation rate of the chloroethene i, $r_{\text{max},i}$ is the maximum degradation rate and $f(\text{pH})$ is the pH inhibition function (see Eq. 3).
Molecular detection of OHRB

Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses were conducted to evaluate the microbial community structure of the consortia SL2-PCEa, SL2-PCEb, AQ-1 and AQ-5. The T-RFLP analyses were performed on the culture at the end of the pH experiments described above. DNA extraction and T-RFLP analysis were carried on cells from a 20-ml culture aliquot as described previously (41). Amplifications of the 16S rRNA were performed with a thermocycler T3 (Biometra, Biolabo, Châtel-St-Denis, Switzerland) with the eubacterial forward primer Eub-8F FAM fluorescently labeled at the 5’ position, and the reverse primer Eub-518r with the following thermocycling program: 94 °C for 4 min 30s (one cycle); 94 °C for 30 s, 55 °C for 45s, 72°C for 1 min 45s (30 cycles), 72 °C for 10 min (one cycle). For each sample, three T-RFLP analyses with three restriction enzymes (Hae III, HhaI and Msp I) were conducted. The affiliation of terminal restriction fragments (T-RFs) to known OHRB was achieved by a semi-specific T-RFLP method using a semi-specific PCR with the non-specific primer Eub-8F and a specific reverse primer for the genus of interest. Reverse primers were taken from Smits et al. (42) for Dehalobacter restrictus, Adrian et al. (43) for Dehalococcoides spp., Lanthier et al. (44) for Desulfotobacterium spp, and Daprato et al. (45) for Sulfurospirillum spp. Pure cultures and highly enriched consortia of known composition were used as positive controls. The semi-specific T-RFLP analyses were conducted in parallel with three restriction enzymes Hae III, Hha I, Msp I (Promega) in order to obtain three T-RFs corresponding to one genus (see Table 1).

Minerals preparation and characterization

Bulk mineral samples of the four silicate minerals tested were purchased from Dr. F. Krantz Rheinisches Mineralien-Kontor Gmbh and Co. Kg (Bonn, Germany): andradite (Ca₃Fe₂Si₃O₁₂, from Erzgebirge, Sachsen, Germany), diopside (CaMg(SiO₃)₂, Outukumpu, Finland), fayalite (Fe₂SiO₄, Billiton, Indonesia) and forsterite (Mg₂SiO₄, Aheim, Northfjord, Norway). These minerals were chosen as they were identified as suitable buffering agents in a previous modeling study (28) and in screening experiments. The minerals were crushed with a hydraulic press and ground with an agate disc mill.
mineral powder was rinsed and sonicated (2 × 5 min in ethanol then 5 min in milliQ pore water) and washed for 24 h in milliQ water as proposed by Barker et al (46) to remove fine particles. The mineral samples were further dried overnight at 60°C and were sterilized by heating to 150°C for 3 h. Chemical compositions were determined by X-ray fluorescence (XRF) analysis with an XRF spectrometer Philips PW2400 and by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) with a quadrupole spectrometer Elan 6100 DRC. The specific surface area of the cleaned mineral powder was determined by the multi-point nitrogen adsorption BET method with a Quantachrome Nova surface area analyzer (Quantachrome GmbH & Co. KG, Germany).

Evaluation of buffering capacity of silicate minerals in biotic experiment

Biotic experiments to investigate the acid neutralizing capacity of silicate minerals during OHR of chlorinated compounds were performed with the two consortia SL2-PCEa and SL2-PCEb. Duplicate batch tests were conducted in 120-ml serum bottles containing 50 ml of sterile anaerobic growth medium, modified from Holliger et al. (17) to reduce the soluble buffering capacity so that the main source of pH buffering was the mineral powder. The following modifications were made: K_2HPO_4 was added at only 0.49 mM and NH_4HCO_3 at 0.98 mM, and NaH_2PO_4 and NaHCO_3 were completely omitted. The medium was reduced by addition of Na_2S (1 mM). For the consortium containing *Dehalococcoides* (i.e. SL2-PCEa), additional experiments showed that the ionic strength of the low-buffered medium was too low and resulted in an inhibition of *cis*-DCE degradation by *Dehalococcoides* (Fig S1). Therefore, for this consortium, the ionic strength of the anaerobic medium was increased by the addition of 32 mM of NaCl.

Electron donors, substrates and PCE were amended as described above and detailed experimental conditions for the two consortia are listed in Table 2. The nominal PCE concentrations in the medium were equal to 2.5 mM and 1.25 mM for SL2-PCEb and SL2-PCEa, respectively. Acetate (2 mM) was added as carbon source. The mineral powder was added to the batch cultures under aseptic conditions before gas exchange and addition of Na_2S. The amount of sterile mineral powder added to each batch
culture was based on geochemical simulations described below. The amount of mineral, listed in Table 2, was chosen such as to maintain the pH in the tolerance range for each consortium. Two types of controls without mineral powder were performed, a “positive” control with a standard medium buffered by bicarbonate as described previously (17) and a “negative” control with the low-buffered medium described above. The batch cultures were incubated in the dark at 30°C on an overhead shaker at 20 rpm. Measurements of pH and chloroethenes were performed on a regular basis. Analytical measurements were performed until complete transformation of chloroethenes to ethene (for SL2-PCEa) or cis-DCE (for SL2-PCEb) or until dechlorination ceased due to inhibition. For the consortium SL2-PCEa, measurement of dissolved trace elements concentrations (Cd, Cr, Cu, Pb, Zn, Ni, Mn, Co, As) resulting from mineral dissolution were performed at the end of the experiment.

Analytical methods

PCE, TCE, cis-DCE, VC and ethene were analyzed by gas chromatography with a GC Varian Star 3400CX equipped with a GS-GasPro column (30 m by 0.32 mm; J&W Scientific, MSP Friedly & Co, Koeniz, Switzerland) coupled to a flame ionization detector. One hundred microliters of gas samples were collected from the headspace with a Hamilton gastight syringe (Leno, NV) and analyzed on the GC with a 1.3 ml min⁻¹ flow of nitrogen carrier gas. The initial temperature was 45°C; the column was kept at 45°C for 3 min, and then the temperature was raised to 75°C at a rate of 15°C min⁻¹ and then to 200°C at a rate of 25°C min⁻¹ and finally kept at 200°C for 5 min. Trace element concentrations were measured by ICP-MS with an ELAN DRC II (Perkin-Elmer, USA). The pH was measured with a InLab® Micro electrode and a pH-meter SevenEasy™ (Mettler Toledo, Switzerland).

Modeling approach

A geochemical model was used to determine the amount of mineral needed to maintain the pH neutral during the biodegradation of a given amount of chloroethenes. Numerical simulations were performed with the geochemical software PHREEQC-2 (47) and with the database MINTEQA2 (48) using a
modified version of the geochemical model described in Lacroix et al. (28). The amount of mineral
needed was chosen such that the cations released by mineral dissolution counterbalanced acidity
production by bacterial activity. The primary goal of the model was to determine the amount of
mineral needed to counterbalance a given rate of acidity production. Following the approach of
Robinson et al. (9), the acidity rate for each step of the dechlorination pathway was fixed and modeled
as a first-order kinetic rate. The kinetic constant was defined according to preliminary experiments
where the consortia were grown in the same medium with the same amount of chloroethenes. The
acidity production rate was expressed as follows:

\[R_i = k_i C_i f(pH), \]

(2)

where \(R_i \) is the degradation rate of the chloroethene i, \(C_i \) (mol l\(^{-1}\)) is the aqueous concentration of the
chloroethene I, \(k_i \) (s\(^{-1}\)) is a first-order kinetic rate constant. Note that this rate expression is only valid for
the given conditions of this experiment (see values in Table S1). The pH inhibition function \(f(pH) \) was
expressed as:

\[f(pH) = \exp \left(-\frac{[pH_{opt} - pH]}{\sigma^n} \right), \]

(3)

where \(pH_{opt} \) is the optimal pH, and \(n \) and \(\sigma \) are empirical parameters that were estimated by fitting Eq.1
to experimental observations. Partitioning of chloroethenes between the hexadecane, gas and water
phases was expressed as:

\[M = V_w C_w + V_g C_g + V_h C_h = C_w (V_w + V_g H_{cc} + V_h K_{h-w}), \]

(4)

where \(M \) (mol) is the total mass of chloroethenes in the system; \(C_w, C_g \) and \(C_h \) (mol l\(^{-1}\)) are the
concentrations of the chloroethenes in the aqueous, gas and hexadecane phases, respectively, \(V_w, V_g \) and
\(V_h \) are the volumes of the three phases, \(H_{cc} (-) \) is Henry’s constant for partitioning between the aqueous
and gas phases, and \(K_{h-w} (-) \) is the water-hexadecane partition coefficient. The parameters used in this
equation are listed in Table S2.
Mineral dissolution rate was expressed as (31, 49):

\[
R_{\text{Diss}} = \left[k_{\text{H}^+} \left(10^{-n_{\text{H}^+}}\right)^{n_{\text{H}^+}} \exp\left(-T_{\text{inf}}E_{\text{H}^+}\right) + k_w \exp\left(-T_{\text{inf}}E_w\right) \right] \frac{A_0}{V} \left(\frac{m}{m_0}\right)^{\frac{2}{3}} \left(1 - \Omega\right),
\]

with \(T_{\text{inf}} = \frac{1}{R} \left(1 - \frac{298}{T}\right) \).

where \(R_{\text{Diss}} \) (mol m\(^{-2}\) s\(^{-1}\)) is the mineral dissolution rate, \(k_{\text{H}^+} \) and \(k_w \) (mol m\(^{-2}\) s\(^{-1}\)) are the rate constants for the acidic and neutral ranges, respectively, \(n_{\text{H}^+} \) (-) is the reaction order of proton-promoted dissolution, \(E_{\text{H}^+} \) and \(E_w \) (J mol\(^{-1}\)) are the activation energies for the neutral and basic ranges, respectively, \(R \) (J K\(^{-1}\) mol\(^{-1}\)) the universal gas constant, \(T \) (K) the absolute temperature, \(A_0 \) (m\(^2\)) is the initial surface area, \(V \) (l) is the solution volume, \(\Omega \) (-) the mineral saturation index, \(m \) and \(m_0 \) are, respectively, the actual and initial mass of mineral.

The following hypotheses were made, (i) the reactive surface area is equal to the measured BET surface area, and (ii) no passivation of mineral surfaces occurred. The values of all the parameters related with mineral dissolution are listed in Table S3.

Results

Influence of pH on OHR rates

Five organohalide-respiring consortia were used to test the influence of pH on OHR rates. The incubation period of these tests was 23 d for consortium SL2-PCEb, 91 d for PM and 110 d for the other three consortia. A small pH drift (between 0.3 to 1 pH units) was always observed due to insufficient buffering capacity of the zwitterionic buffer. To overcome the impact of pH drift on data analysis, OHR rates were calculated between two time steps during which pH variations were negligible. The dechlorination patterns under standard conditions (i.e., at pH 7) were different for the five consortia.
tested: SL2-PCEb transformed PCE to cis-DCE without transient accumulation of TCE, SL2-PCEa dechlorinated PCE to ethene with transient accumulation of cis-DCE and VC, PM dechlorinated PCE to ethene with a transient accumulation of VC, and AQ-1 transformed cis-DCE to ethene with transient VC accumulation. The dechlorination pattern of AQ-5 was particularly interesting because PCE was transformed to ethene without accumulation of intermediate products (Fig. 1). The pH sensitivity of OHR rates exhibited significant differences between consortia and between each step of the OHR pathway (Fig. 2). The parameters of the pH inhibition function (Eq. 3) for each consortium are listed in Table 3. The degradation of the lesser chlorinated compounds was more sensitive towards acidic pH. During the experiment conducted with SL2-PCEa, cis-DCE was formed down to pH 4.8, VC down to pH 5.3 and ethene down to pH 5.9. The tolerance towards acidic pH conditions was also variable between the five consortia. SL2-PCEb and SL2-PCEa were the most tolerant while AQ-5 was extremely sensitive to acidic conditions. For this consortium, the lowest pH at which dechlorination was observed was 6.15 and a small change in initial pH had a strong impact on the dechlorination pattern. At pH 7, AQ-5 transformed PCE directly to ethene without accumulation of intermediate products while at pH 6.5, accumulation of cis-DCE was observed and no formation of ethene (Fig. 1).

Predominant OHRB at different pHs

All consortia except SL2-PCEb contained *Dehalococcoides*. The results of T-RFLP indicated that the *Dehalococcoides* strains present in the different consortia were not the same. When T-RFLP analysis was performed with the restriction enzyme Hae III, the *Dehalococcoides* population present in the consortia SL2-PCEa and AQ-1 produced a T-RF with a length of 165 base pairs while *Dehalococcoides* present in AQ-5 produced a T-RF of 244 base pairs. Consortia SL2-PCEa and SL2-PCEb both contained a population identified as *Sulfurospirillum* spp. (50) and consortium AQ-5 a population that affiliated to *Dehalobacter* spp. (38).

T-RFLP analysis performed at the end of the pH sensitivity experiments showed that the consortia SL2-PCEa and AQ-5 containing more than one OHRB had a different predominant OHRB at the end of the...
experiment which correlated with the dechlorination end product observed. At pH 5 and 5.5 with \textit{cis}-DCE as dechlorination product, SL2-PCEa was dominated by \textit{Sulfurospirillum} spp. (78% ± 7% at pH 5) while at pH 6 to 7.5 with ethene as dechlorination end product \textit{Dehalococcoides} spp. was the most abundant OHRB (77.5% ± 1% at pH 7.5). In the consortium AQ-5, \textit{Dehalobacter} spp. was predominant at pH 6.5 (74% ± 1%) while \textit{Dehalococcoides} spp. was predominant at pH 7 (76% ± 4.5%) at the end of the experiment.

\textbf{Acid neutralizing capacity of silicate minerals during growth of OHRB}

Figure 3 shows the evolution of pH in the batch cultures containing minerals and OHRB. In positive controls, pH remained rather constant in the range of 7.2 to 7.5. On the contrary, in the negative control, OHR activities resulted in a pH decrease to the inhibition value for OHRB. In batch cultures containing silicate mineral powders, pH remained in a range that was above the acidic limit below which OHR activity of the consortia was fully inhibited. In cultures of SL2-PCEb, pH was maintained between 5.5 and 7.5 by andradite, fayalite, forsterite and diopside while in the cultures of SL2-PCEa, the same minerals maintained the pH in the range of 6.6 and 8.3.

\textbf{OHR activity with silicate minerals as pH buffering agent}

Figure 4 presents the dechlorination pattern over time for the positive and negative control and for the batches containing a silicate mineral with SL2-PCEa as inoculum. An increase of the lag phase was observed from 2 days for the positive control to 5 days in the negative control, 9 days with fayalite and forsterite, and 16 days with diopside. The same observation of increased lag phase in the presence of minerals was also made in cultures of consortium SL2-PCEb. In the negative controls, a stop of the dechlorination process was observed due to acidification of the medium. For instance, dechlorination stopped after 4 days in the negative control of SL2-PCEb with 41 % of TCE and 60% of \textit{cis}-DCE as dechlorination end products. Table 5 summarizes the composition of dechlorination end products at the end of the experiments.
Dechlorination of PCE to cis-DCE was complete in the presence of fayalite, diopside and forsterite with the two consortia SL2-PCEa and SL2-PCEb. However, in the presence of andradite, the transformation of PCE to cis-DCE was either partially (for SL2-PCEb) or fully inhibited (for SL2-PCEa, Fig. 4). Dechlorination of cis-DCE to VC and ethene was evaluated with SL2-PCEa. These two dechlorination steps occurred in the presence of forsterite, fayalite and diopside, but not with andradite (Fig. 4). However transformation of cis-DCE and VC occurred at much lower rates than in the positive control although the pH remained neutral. Transformation of VC to ethene took 16 days in the positive control while it took about 148 days in the batch with forsterite. With diopside and fayalite, VC dechlorination was completed to 81% and 34%, respectively, after 185 days of incubation.

Influence of silicate mineral dissolution on redox potential

An indication of a changing redox state of the medium was given by resazurin which is a redox indicator that is colorless at a redox potential \(\leq 100 \text{ mV} \) and pink under more oxidizing conditions (51). In batch cultures amended with andradite, the medium became pink after 1 day for the consortium SL2-PCEa and after 5 days for the consortium SL2-PCEb. No change in medium coloration was observed for the other minerals. It has been reported that at a redox potential > 100 mV the growth of OHRB is not possible (52).

Release of heavy metals by the silicate minerals

The silicate minerals used in this study contain traces of heavy metals that could possibly have an inhibitory effect on dechlorination by OHRB. The concentration of dissolved heavy metals in solution at the end of the experiments and known to be toxic for bacteria, are presented in Table S4. Of the nine heavy metals tested (Zn, Cu, Mn, Cd, Co, Cr, Ni, Pb and As), only two (Mn and As) were present in higher concentration in batches with silicate minerals then in the controls. For instance, manganese was present at a concentration up to 1 mg l\(^{-1}\) in the batch with fayalite, and arsenic was present at a concentration of 75 µg l\(^{-1}\) in the batch with andradite.
DISCUSSION

Influence of pH on OHR activity

This study showed noticeable differences in pH sensitivity between the different steps of the PCE dechlorination pathway. The last steps from \textit{cis}-DCE to ethene were more sensitive towards acidic pH than the transformation of PCE to \textit{cis}-DCE. This pattern can be explained by the different sensitivity of the different OHRB involved in PCE dechlorination. Consortium AQ-5 is mainly composed of a \textit{Dehalobacter} population that dechlorinates PCE to \textit{cis}-DCE and a \textit{Dehalococcoides} population able to form ethene. At pH 7.0 where ethene was formed, \textit{Dehalococcoides} spp. was the predominant population at the end of the experiment while at pH 6.5, \textit{Dehalobacter} spp. was predominant and \textit{cis}-DCE was the dechlorination end product, indicating that the former population was extremely pH sensitive unlike the latter. For consortium SL2-PCEa, composed of \textit{Sulfurospirillum} spp. and \textit{Dehalococcoides} spp., the latter was also almost not detected in cultures with acidic pH where PCE dechlorination stalled at \textit{cis}-DCE. These results indicate that bacteria belonging to the genus \textit{Dehalococcoides} are quite sensitive toward acidic pH. In addition, the transformation from VC to ethene seemed to be more sensitive towards pH than the dechlorination from \textit{cis}-DCE to VC, both performed by \textit{Dehalococcoides}. These results are in agreement with practitioner knowledge and with a study of Rowlands (53) that showed that the range of complete degradation from PCE to ethene was observed between pH 6 and 8.3, whereas partial degradation of PCE to \textit{cis}-DCE and VC occurred in a broader pH range of 5 to 9 in bacterial consortia. In addition, Löffler et al. (54) showed that pure cultures of \textit{Dehalococcoides} are active only between pH 6.5 and 8.0. The result of this study can have important implication for application of OHR in groundwater bioremediation and showed that if pH is not controlled properly and is between 5 and 6, it could lead to the accumulation of toxic intermediate such as \textit{cis}-DCE and VC.

The five consortia tested in this study presented different tolerances towards acidic pH. SL2-PCEa was the most tolerant consortium with transformation of VC to ethene down to pH 5.9 while AQ-5 presented...
a very narrow tolerance range (production of ethene down to pH 6.4). These two consortia both contained members of the genus *Dehalococcoides* but probably different strains as indicated by the results of T-RFLP. Identification of *Dehalococcoides* populations tolerant to mildly acidic pH such as the one present in SL2-PCEa might be of interest for bioaugmentation applications. In addition, it is of importance for application to know the pH sensitivity of the OHRB populations present at a specific site in order to design the appropriate bioremediation approach and to assure that the success of the remediation approach is not hampered due to pH inhibition. The mere detection of presence of *Dehalococcoides* spp. does not provide sufficient information and laboratory tests could help to get the necessary information. For instance, the influence of pH on each step of the dechlorination pathway with OHRB from the site could be tested following the approach presented in this study.

Suitability of silicate minerals as pH buffering agents during OHR of chloroethenes

The results of cultures amended with ground silicate minerals confirmed the potential of the latter as acid-neutralizing agents. Previous studies using numerical simulations (28) and abiotic dissolution experiments (29) already indicated that these minerals could be used as pH buffers. The four mineral tested (andradite, fayalite, forsterite and diopside) were predicted to maintain the pH in the suitable range for dechlorination and could theoretically sustain the transformation of PCE to ethene. Results obtained here showed that three of the four minerals indeed enabled PCE dechlorination to ethene whereas in the negative controls dechlorination stalled at VC. However, they also showed that other mechanisms associated with silicate dissolution can negatively influence chloroethene dechlorination rates.

Among the four minerals tested, andradite was the only one which inhibited the transformation of PCE. Additional experiments, demonstrated that the extent of PCE dechlorination inhibition was proportional to the amount of andradite dissolved (results not shown). This observation could be due to the presence of an oxidizing component in the mineral. Indeed, andradite is the only mineral tested that contained high concentration of Fe(III) (55). Ferric iron is a recognized oxidizing agent and addition of Fe(III) is
known to increase the redox potential of anaerobic solutions (56, 57). The increase of redox potential was confirmed by the color change of the redox indicator resazurin. OHRB are strict anaerobic bacteria (58) and cannot dechlorinate PCE when the redox potential is > 100 mV, which was the case with andradite. Our results suggest that the presence of redox-active compounds inside the minerals, such as Fe(III) have to be considered carefully prior to select a buffering agent. For iron-containing minerals, the oxidation state of iron should be evaluated and Fe (III)-containing minerals should not be used if the remediation strategy requires a low redox potential to proceed.

The experiments with the consortia SL2-PCEa indicated that the transformation of cis-DCE to ethene seems to be more sensitive to mineral dissolution than the transformation of PCE to cis-DCE. Since Dehalococcoides spp. seemed to be responsible for cis-DCE and VC dechlorination, the results indicated that OHRB of this genus are quite sensitive to effects that silicate mineral dissolution might have on biological activity. Some trace metals release during mineral dissolution such as manganese or arsenic might have been responsible for the slower cis-DCE dechlorination rates observed. To the best of our knowledge, there are no studies to date investigating the toxicity of these metals on cis-DCE-dechlorinating bacteria. Metal toxicity studies have been conducted with other bacteria involved in halogenated compound biodegradation, but they are limited to a restricted number of organic compounds (trichloroaniline, 2-chlorophenol, 3-chlorobenzoate, hexachlorobenzene, pentachlorophenol) (59). These studies reported that the lowest concentration, at which inhibition by manganese was observed, was equal to 28.2 mg l\(^{-1}\) (i.e. 0.51 mM), which is much higher than the concentration measured in this study (i.e. around 1 mg l\(^{-1}\) or 0.018 mM). Additional studies should be conducted to investigate the exact reason for the inhibition observed in presence of silicate mineral.

The lower rates of cis-DCE and VC dechlorination were perhaps a consequence of the experimental approach chosen. Indeed, in a batch system, nutrient depletion and accumulation of toxic or redox active compounds are increasing with time. In contrast, under field conditions, these effects are less likely to occur, due to the renewal of the pore water through groundwater flow. Further studies should be...
conducted in continuous flow systems to evaluate the feasibility of overcoming this issue and to assess the buffering efficiency of the minerals on the long term.

An important issue for field applications of the pH control approach developed in this study is the delivery of the mineral to the subsurface. This was beyond the scope of this study but has been addressed by Piegat and Newman (60) which studied experimentally the transport of insoluble solid buffer made of calcium carbonate in column experiments. They showed that colloidal suspension of CaCO3 particles stabilized with selected additives to produce a negative charge were able to travel sufficiently in the subsurface with significant alkalinity retained and a decrease of permeability less than 10%.

In conclusion, this study showed that each step of the PCE dechlorination pathway present a different sensitivity toward acidic pH, with an increasing sensitivity for the degradation of lesser chlorinated ethenes. In addition, it is very likely that different populations of *Dehalococcoides* can have different sensitivity toward acidic pH which has important implications for *in situ* bioremediation and demonstrate the need to carefully evaluate the pH sensitivity of native OHRB present at a site. It also put in evidence the need to develop appropriate pH control strategies to avoid accumulation of toxic intermediates. The results obtained with silicate mineral powder as pH buffering agents showed that these minerals are able to neutralize acidity produced by OHRB without leading to pH overshooting and allowed ethene formation from PCE. However, interactions between minerals and OHRB activity need to be carefully evaluated as silicate mineral decreased the transformation rates of cis-DCE to ethene.

Acknowledgments

This work was funded by the Swiss National Science Foundation (SNSF; 200021-120160/1). The authors thank Nicole Munz, Louise Gilbert and Naomi Dumas for her assistance in performing the experiments.
References

52. **Chapelle FH.** 1996. Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems, p. 17-20, Symposium on Natural Attenuation of Chlorinated Organics in Ground Water. U.S. Environmental Protection Agency (US EPA), Dallas, TX, USA.

FIG 1 Dechlorination of PCE by cultures of consortium AQ-5 at initial pH of 6.5 and 7.0. The data points represent the average value of duplicates. The maximum variation between the average value and each replicate is equal to 10%.

FIG 2 Effect of pH on organohalide respiration rate for each step of the PCE dechlorination pathway and for the five consortia tested: a) SL2-PCEa and SL2-PCEb; b) PM; c) AQ5; d) SL2-PCEa and AQ-1 and e) SL2-PCEa, AQ-1 and PM. The dechlorination rates of all cultures are plotted. The lines represent the fit of the experimental data to Eq. 3. The organohalide respiration rates (in mM of chloride produced per day) were calculated based on the results of the dechlorination products measured by gas chromatography.

FIG 3 Evolution of pH in cultures of consortia SL2-PCEb (a) and SL2-PCEa (b) and different ground silicate minerals as buffering agents. The value plotted is the average value of duplicates. The maximum variation between the average value and one replicate is equal to 0.25 pH units.

FIG 4 Dechlorination pattern in the batch cultures of the consortium SL2-PCEa with the three minerals diopside, fayalite, and forsterite as pH buffering agents. In the cultures with andradite, no PCE dechlorination was observed and therefore the results were not presented. Data of just one culture are reported since duplicates behaved similarly yet not identical, with some differences in the length of the lag phase.
TABLE 1 Length of terminal restriction fragments corresponding to known genera of organohalide-respiring bacteria determined by semi-specific T-RFLP analysis with the three restriction enzymes Hae III, Hha I and Msp I.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Terminal restriction fragment length (bp)</th>
<th>Hae III</th>
<th>Hha I</th>
<th>Msp I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfurospirillum</td>
<td></td>
<td>252</td>
<td>90</td>
<td>463</td>
</tr>
<tr>
<td>Dehalococcoides<sup>a</sup></td>
<td></td>
<td>165</td>
<td>194</td>
<td>488<sup>c</sup></td>
</tr>
<tr>
<td>Dehalococcoides<sup>b</sup></td>
<td></td>
<td>244</td>
<td>194</td>
<td>488<sup>c</sup></td>
</tr>
<tr>
<td>Dehalobacter</td>
<td></td>
<td>212</td>
<td>229</td>
<td>137</td>
</tr>
</tbody>
</table>

^a Fragment size corresponding to the *Dehalococcoides* strain present in the consortia SL2-PCEa and AQ-1

^b Fragment size corresponding to the *Dehalococcoides* strain present in consortium AQ-5

^c There is no restriction site for the enzyme MspI in the fragment amplified. The fragment length corresponds to the undigested fragment.
TABLE 2 Experimental conditions used in the batch cultures with consortia containing OHRB and different silicate minerals as pH buffering agent.

<table>
<thead>
<tr>
<th>Consortium Electron donor / Substrate</th>
<th>Chlorinated ethene</th>
<th>Silicate mineral powder</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nominal concentration (mM)</td>
<td>Mineral</td>
</tr>
<tr>
<td>SL2-PCEb</td>
<td>Hydrogen</td>
<td>PCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL2-PCEa</td>
<td>Hydrogen</td>
<td>PCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The headspace of cultures with hydrogen as electron donor was 100 % H₂.

b The nominal concentration is a theoretical value and indicates the concentration that would be reached if all chlorinated ethene added as hexadecane stock solution would be present in the aqueous phase.

c The specific surfaces for the same mineral are different because the mineral powder added did not originate from the same batch of prepared mineral powder.
TABLE 3 Fitted parameters of the pH inhibition function (Eq.3) and goodness-of-fit (r^2) for the five consortia SL2-PCEa, SL2-PCEb, AQ-1, AQ-5 and PM a

<table>
<thead>
<tr>
<th>Consortium</th>
<th>Dechlorination step</th>
<th>pH_{opt}</th>
<th>σ</th>
<th>n</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL2-PCEa</td>
<td>PCE to cis-DCE</td>
<td>6.99 ± 0.05</td>
<td>1.10 ± 0.06</td>
<td>2.09 ± 0.32</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>cis-DCE to VC</td>
<td>6.60 ± 0.02</td>
<td>0.97 ± 0.05</td>
<td>5.28 ± 0.87</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>VC to ethene</td>
<td>6.50 ± 0.05</td>
<td>0.67 ± 0.14</td>
<td>2.75 ± 0.42</td>
<td>0.92</td>
</tr>
<tr>
<td>SL2-PCEb</td>
<td>PCE to cis-DCE</td>
<td>6.44 ± 0.07</td>
<td>0.92 ± 0.09</td>
<td>1.94 ± 0.60</td>
<td>0.94</td>
</tr>
<tr>
<td>AQ-1</td>
<td>cis-DCE to VC</td>
<td>7.43 ± 0.12</td>
<td>1.22 ± 0.15</td>
<td>1.86 ± 0.59</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>VC to ethene</td>
<td>6.99 ± 0.10</td>
<td>1.01 ± 0.16</td>
<td>3.42 ± 1.60</td>
<td>0.95</td>
</tr>
<tr>
<td>AQ-5</td>
<td>PCE to ethene</td>
<td>6.56 ± 0.04</td>
<td>0.21 ± 0.02</td>
<td>2.15 ± 0.08</td>
<td>0.99</td>
</tr>
<tr>
<td>PM</td>
<td>PCE to VC</td>
<td>6.78 ± 0.11</td>
<td>0.76 ± 0.15</td>
<td>2.60 ± 1.24</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>VC to ethene</td>
<td>6.78 ± 0.02</td>
<td>0.70 ± 0.04</td>
<td>4.17 ± 0.33</td>
<td>0.99</td>
</tr>
</tbody>
</table>

a The model was fitted to the data using a non-linear least square method and the trust region algorithm as implemented in MATLAB (www.mathworks.com, last accessed 21 January 2013). For each parameter, the 95% confidence interval obtained with Matlab is given.
TABLE 4 Community composition at the end of pH experiments as determined by T-RFLP analyses in the consortia SL2-PCEa and AQ-5.

<table>
<thead>
<tr>
<th></th>
<th>SL2-PCEa</th>
<th>AQ-5</th>
<th>AQ-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehalococcoides</td>
<td>Sulfurospirillum</td>
<td>Others</td>
<td>Dehalococcoides</td>
</tr>
<tr>
<td>pH 5</td>
<td>2.8 ± 0.6</td>
<td>78.3 ± 6.7</td>
<td>18.9 ± 6.2</td>
</tr>
<tr>
<td>pH 5.5</td>
<td>1.9 ± 0.4</td>
<td>68.1 ± 3.0</td>
<td>30 ± 3.3</td>
</tr>
<tr>
<td>pH 6</td>
<td>81.8 ± 1.8</td>
<td>14.7 ± 1.9</td>
<td>3.5 ± 1.0</td>
</tr>
</tbody>
</table>

*a Each T-RFLP was performed in triplicate with three different restriction enzymes. In the consortia SL2-PCEb and AQ-1, no significant changes of the community composition were observed since only one OHRB was present.
TABLE 5 Proportion of dechlorination products at the end of the incubation period of cultures inoculated with consortia SL2-PCEb, SL2-PCEa and AQ-1, and amended with different ground silicate minerals

<table>
<thead>
<tr>
<th>Consortium</th>
<th>Positive control</th>
<th>Negative control</th>
<th>Andradite</th>
<th>Diopside</th>
<th>Fayalite</th>
<th>Forsterite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL2-PCEb</td>
<td>PCE 0 %</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>TCE 0 %</td>
<td>93%</td>
<td>49%</td>
<td>3%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>cis-DCE 100%</td>
<td>7%</td>
<td>49%</td>
<td>97%</td>
<td>99%</td>
<td>100%</td>
</tr>
<tr>
<td>SL2-PCEa</td>
<td>PCE 0 %</td>
<td>0%</td>
<td>98%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>TCE 0 %</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>cis-DCE 0 %</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>VC 0%</td>
<td>95%</td>
<td>0%</td>
<td>19%</td>
<td>66%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Ethene 100%</td>
<td>5%</td>
<td>0%</td>
<td>81%</td>
<td>34%</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Proportion of parent compound and dechlorination products were determined at the end of the experiment, on day 40 for SL2-PCEb. For SL2-PCEa, data for the positive control were determined after 33 days of incubation, for the negative control after 87 days, and for the cultures containing silicate mineral powders after 185 days.