Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Metabolism, Growth, and Industrial Microbiology

Phytol Degradation by Marine Bacteria

Francis T. Gillan, Peter D. Nichols, R. B. Johns, H. John Bavor
Francis T. Gillan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter D. Nichols
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
R. B. Johns
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H. John Bavor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Microbial degradation of phytol is often proposed to be the primary source of the acyclic isoprenoid acids observed in sediments, yet only a limited number of these acids have been found in bacterial cultures grown on phytol. This study reports detailed capillary gas chromatography and gas chromatography-mass spectrometry analyses of the products resulting from growth of marine bacteria on phytol as the sole carbon source. We examined two strains of bacteria which were able to oxidize phytol to phytenic acid but were unable to further degrade phytol. The third isolate studied converted phytol to a mixture of five saturated isoprenoid acids. The C17 isoprenoid acid produced was of particular interest, since its genesis from phytol would have involved several unusual intermediates. It is suggested that this acid is produced by bacterial metabolism of the C18 isoprenoid ketone (produced from phytol abiologically under oxic conditions) and that its abundance is thus a sensitive indicator of sedimentary depositional conditions.

FOOTNOTES

  • ↵† Present address: Australian Institute of Marine Science, P.M.B. no. 3, Townsville M.S.O. Queensland 4810, Australia.

  • ↵‡ Present address: School of Food Science, Hawksbury Agriculture College, Richmond, New South Wales 2753, Australia.

  • Copyright © 1983, American Society for Microbiology
PreviousNext
Back to top
Download PDF
Citation Tools
Phytol Degradation by Marine Bacteria
Francis T. Gillan, Peter D. Nichols, R. B. Johns, H. John Bavor
Applied and Environmental Microbiology May 1983, 45 (5) 1423-1428; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Phytol Degradation by Marine Bacteria
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Phytol Degradation by Marine Bacteria
Francis T. Gillan, Peter D. Nichols, R. B. Johns, H. John Bavor
Applied and Environmental Microbiology May 1983, 45 (5) 1423-1428; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336