Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Toxin production by Fusarium species from sugar beets and natural occurrence of zearalenone in beets and beet fibers.

U Bosch, C J Mirocha
U Bosch
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C J Mirocha
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Fifty-five Fusarium isolates belonging to nine species were collected from fungus-invaded tissue of stored sugar beets and identified as F. acuminatum (11 isolates), F. avenaceum (1 isolate), F. culmorum (1 isolate), F. equiseti (23 isolates), F. graminearum (4 isolates), F. oxysporum (1 isolate), F. solani (4 isolates), F. sporotrichioides (7 isolates), and F. subglutinans (2 isolates). All isolates were cultured on autoclaved rice grains and assayed for toxicity by feeding weanling female rats the ground-rice cultures of the isolates in a 50% mixture with a regular diet for 5 days. Fifty-eight percent of the isolates were acutely toxic to rats, 26% caused hematuria, 18% caused hemorrhages, and 29% caused uterine enlargement. In most cases, toxicity could not be accounted for by the known toxins found. The following mycotoxins were found in extracts of the rice cultures: zearalenone (22 to 6,282 micrograms/g), chlamydosporol (HM-8) (68 to 4,708 micrograms/g), moniliformin (45 to 400 micrograms/g), deoxynivalenol (10 to 34 micrograms/g), 15-acetyldeoxynivalenol (5 to 10 micrograms/g), diacetoxyscirpenol (22 to 63 micrograms/g), monoacetoxyscirpenol (21 to 26 micrograms/g), scirpenetriol (24 micrograms/g), T-2 toxin (4 to 425 micrograms/g), HT-2 toxin (2 to 284 micrograms/g), neosolaniol (2 to 250 micrograms/g), and T-2 tetraol (4 to 12 micrograms/g). F. equiseti was the predominant species found on visibly molded beets in the field. Six of 25 moldy sugar beet root samples collected in the field contained zearalenone in concentrations ranging between 12 and 391 ng/g, whereas 10 samples from commercial stockpiles were negative for zearalenone.(ABSTRACT TRUNCATED AT 250 WORDS)

PreviousNext
Back to top
Download PDF
Citation Tools
Toxin production by Fusarium species from sugar beets and natural occurrence of zearalenone in beets and beet fibers.
U Bosch, C J Mirocha
Applied and Environmental Microbiology Oct 1992, 58 (10) 3233-3239; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Toxin production by Fusarium species from sugar beets and natural occurrence of zearalenone in beets and beet fibers.
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Toxin production by Fusarium species from sugar beets and natural occurrence of zearalenone in beets and beet fibers.
U Bosch, C J Mirocha
Applied and Environmental Microbiology Oct 1992, 58 (10) 3233-3239; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336