Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
General Microbial Ecology

Assessment of [3H]Thymidine Incorporation into DNA as a Method To Determine Bacterial Productivity in Stream Bed Sediments

Louis A. Kaplan, Thomas L. Bott, John K. Bielicki
Louis A. Kaplan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas L. Bott
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John K. Bielicki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We performed several checks on the underlying assumptions and procedures of the thymidine technique applied to stream bed sediments. Bacterial production rates were not altered when sediments were mixed to form a slurry. Incubation temperature did affect production rates. Controls fixed and washed with formaldehyde had lower backgrounds than trichloroacetic acid controls. DNA extraction by base hydrolysis was incomplete and variable at 25°C, but hydrolysis at 120°C extracted 100% of the DNA, of which 84% was recovered upon precipitation. Production rates increased as thymidine concentrations were increased over 3 orders of magnitude (30 nM to 53 μM thymidine). However, over narrower concentration ranges, thymidine incorporation into DNA was independent of thymidine concentration. Elevated exogenous thymidine concentrations did not eliminate de novo synthesis. Transport of thymidine into bacterial cells occurred at least 5 to 20 times faster than incorporation of label into DNA. We found good agreement between production rates of bacterial cultures based upon increases in cell numbers and estimates based upon thymidine incorporation and amount of DNA per cell. Those comparisons emphasized the importance of isotopic dilution measurements and validated the use of the reciprocal plot technique for estimating isotopic dilution. Nevertheless, the thymidine technique cannot be considered a routine assay and the inability to measure the cellular DNA content in benthic communities restricts the accuracy of the method in those habitats.

FOOTNOTES

  • ↵* Corresponding author.

  • Copyright © 1992, American Society for Microbiology
PreviousNext
Back to top
Download PDF
Citation Tools
Assessment of [3H]Thymidine Incorporation into DNA as a Method To Determine Bacterial Productivity in Stream Bed Sediments
Louis A. Kaplan, Thomas L. Bott, John K. Bielicki
Applied and Environmental Microbiology Nov 1992, 58 (11) 3614-3621; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Assessment of [3H]Thymidine Incorporation into DNA as a Method To Determine Bacterial Productivity in Stream Bed Sediments
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Assessment of [3H]Thymidine Incorporation into DNA as a Method To Determine Bacterial Productivity in Stream Bed Sediments
Louis A. Kaplan, Thomas L. Bott, John K. Bielicki
Applied and Environmental Microbiology Nov 1992, 58 (11) 3614-3621; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336