ABSTRACT
Anaerobic granules degrading pentachlorophenol (PCP) with specific PCP removal activity up to 14.6 mg/g of volatile suspended solids per day were developed in a laboratory-scale anaerobic upflow sludge blanket reactor at 28 degrees C, by using a mixture of acetate, propionate, butyrate, and methanol as the carbon source. The reactor was able to treat synthetic wastewater containing 40 to 60 mg of PCP per liter at a volumetric loading rate of up to 90 mg/liter of reactor volume per day, with a hydraulic retention time of 10.8 to 15 h. PCP removal of more than 99% was achieved. Results of adsorption of PCP by granular biomass indicated that the PCP removal by the granules was due to biodegradation rather than adsorption. A radiotracer assay demonstrated that the PCP-degrading granules mineralized [14C]PCP to 14CH4 and 14CO2. Toxicity test results indicated that syntrophic propionate degraders and acetate-utilizing methanogens were more sensitive to PCP than syntrophic butyrate degraders. The PCP-degrading granules also exhibited a higher tolerance to the inhibition caused by PCP for methane production and degradation of acetate, propionate, and butyrate, compared with anaerobic granules unadapted to PCP.