Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article

Reduction of Selenium Oxyanions by Enterobacter cloacae SLD1a-1: Isolation and Growth of the Bacterium and Its Expulsion of Selenium Particles.

M E Losi, W T Frankenberger
M E Losi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
W T Frankenberger
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

A facultative bacterium capable of removing the selenium (Se) oxyanions selenate (SeO(inf4)(sup2-)) and selenite (SeO(inf3)(sup2-)) from solution culture in flasks open to the atmosphere was isolated and studied with the goal of assessing its potential for use in bioremediation of seleniferous agricultural drainage water. Elemental Se (Se(sup0)) was confirmed as a product of the reaction. The organism, identified as Enterobacter cloacae and designated strain SLD1a-1 (ATCC 700258), removed from 61.5 to 94.5% of added SeO(inf4)(sup2-) (the primary species present in agricultural drainage water) at concentrations from 13 to 1,266 (mu)M. Equimolar amounts of nitrate (NO(inf3)(sup-)), which interferes with SeO(inf4)(sup2-) reduction in some organisms, did not influence the reaction in growth experiments but had a slight inhibitory effect in a washed-cell suspension. Washed-cell suspension experiments also showed that (i) SeO(inf3)(sup2-) is a transitory intermediate in reduction of SeO(inf4)(sup2-), being produced and rapidly reduced concomitantly; (ii) NO(inf3)(sup-) is also reduced concomitantly and at a much higher rate than SeO(inf4)(sup2-); and (iii) although enzymatic, reduction of either oxyanion does not appear to be an inducible process. Transmission electron microscopy revealed that precipitate particles are <0.1 (mu)m in diameter, and these particles were observed free in the medium. Evidence indicates that SLD1a-1 uses SeO(inf4)(sup2-) as an alternate electron acceptor and that the reaction occurs via a membrane-associated reductase(s) followed by rapid expulsion of the Se particles.

PreviousNext
Back to top
Download PDF
Citation Tools
Reduction of Selenium Oxyanions by Enterobacter cloacae SLD1a-1: Isolation and Growth of the Bacterium and Its Expulsion of Selenium Particles.
M E Losi, W T Frankenberger
Applied and Environmental Microbiology Aug 1997, 63 (8) 3079-3084; DOI:

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reduction of Selenium Oxyanions by Enterobacter cloacae SLD1a-1: Isolation and Growth of the Bacterium and Its Expulsion of Selenium Particles.
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Reduction of Selenium Oxyanions by Enterobacter cloacae SLD1a-1: Isolation and Growth of the Bacterium and Its Expulsion of Selenium Particles.
M E Losi, W T Frankenberger
Applied and Environmental Microbiology Aug 1997, 63 (8) 3079-3084; DOI:
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336