Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Methods

Allelic Exchange in Actinomyces oris with mCherry Fluorescence Counterselection

Chenggang Wu, Hung Ton-That
Chenggang Wu
Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hung Ton-That
Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, Texas 77030
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: ton-that.hung@uth.tmc.edu
DOI: 10.1128/AEM.00811-10
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Described here is a method for facile generation of markerless gene deletion mutants of Actinomyces oris. Homologous integration of a nonreplicative vector carrying a gene exchange cassette into the bacterial chromosome was selected for by using mCherry fluorescence and resistance to kanamycin. Completion of allelic replacement was counterselected for by using loss of fluorescence.

Actinomyces oris (formerly Actinomyces naeslundii [3]) is Gram positive, facultatively anaerobic, and commonly found in the human oral cavity and plays a major role in the formation of oral biofilm or dental plaque. It is thought that adherence of A. oris to the tooth surface and its coaggregation with oral streptococci create an adhesive platform for subsequent colonization of bacteria in the plaque community (4). A. oris surface molecules such as fimbriae and pili have been shown previously to be required for the bacterial interactions with host tissues and other oral bacteria (7). However, the roles of fimbrial molecules or other surface proteins involved in these processes and their molecular assembly on the cell surface remain elusive. Lack of a facile gene disruption technology is the main reason for this obscurity.

Conventional methods of genetic manipulation employing nonreplicative plasmids as delivery vectors in A. oris have been used to create gene disruption by allelic exchange, which allows insertion of a selectable marker (1, 8, 9). Often, this strategy generates polar mutations that affect downstream genes, and it is inadequate for multigene deletion because antibiotic markers for Actinomyces are scarce. To circumvent this problem, we successfully developed a method that utilizes a pUC19 derivative (namely, pHTT177) to generate a nonpolar, in-frame deletion of the sortase gene srtC2 (5). However, this system proved extremely laborious because the second homologous recombination (double-crossover) event leading to chromosomal excision and loss of the plasmid could not be efficiently selected for. Consequently, we explored fluorescence as a positive selection marker for A. oris, as described below.

To generate a nonreplicative delivery vector for gene replacement with a counterselectable marker, we cloned the gene encoding the red fluorescent protein mCherry under the control of the constitutive promoter PrpsJ into pHTT177 by using EcoRI and NdeI sites (5) (Fig. 1). Initially, the mCherry sequence was amplified from plasmid pRSET-B-mCherry DNA (6) by using primers P1 (5′-GGCGGCTAGCATGGTGAGCAAGGGCGAGGAG-3′) and P2 (5′-GGCGCATATGCTACTACTTGTACAGCTCGTCCATG-3′), which contain NheI and NdeI sites (underlined), respectively. Primers P3 (5′-GGCGGAATTCCGCCCGAGCGCGGGGACCAGT-3′) and P4 (5′-GGCGGCTAGCGGCGCCTAACCTCTCTTGTACTTG-3′), containing EcoRI and NheI sites, were used to amplify the untranslated region of rpsJ from A. oris MG-1 chromosomal DNA (see gene identification no. ANA_0026 in the A. oris database at www.oralgen.lanl.gov ). Both fragments were subcloned into pJRD215 at EcoRI and NdeI sites (2). The resulting vector, pCWU3, has a multiple-cloning site (MCS) containing EcoRI, SacI, KpnI, BamHI, XbaI, SalI, and HindIII sites for cloning purposes (Fig. 1).

As a proof of concept, we utilized the vector pCWU3, created as described above, to generate an in-frame deletion of acaA (see gene identification no. ANA_0196 in the database at www.oralgen.lanl.gov ), encoding a putative cell wall anchor protein (called Aca for actinomyces cell wall anchor). Primer sets P5/P6 (5′-GGCGGAATTCGCCGGAGGCGCCGTCGGGGAAG-3′/5′-GGCGGGTACCAGGATCTCCGTTAGACACGG-3′) and P7/P8 (5′-GGCGGGTACCCAGCGAGACTGCGACCAGCAG-3′/5′-GGCGTCTAGAGGTGGGCGTACTTCTGGTCCAT-3′) were used to amplify ∼1.0-kb sequences upstream and downstream, respectively, of acaA from A. oris MG-1 chromosomal DNA. The upstream DNA fragment was digested with EcoRI and KpnI, while the downstream fragment was digested with KpnI and XbaI (restriction enzyme sites are underlined); both fragments were ligated into pCWU3, which had been precut with EcoRI and XbaI. A. oris MG-1 was transformed with the resulting plasmid by electroporation (5), and kanamycin-resistant colonies representing integration of the plasmid into the bacterial chromosome were selected for their ability to grow on heart infusion (HI; Difco) agar plates supplemented with 50-μg ml−1 kanamycin. These colonies were also examined for their fluorescence by using an Olympus XI71 inverted microscope equipped with a Hamamatsu charge-coupled device camera and a tetramethyl rhodamine isothiocyanate (TRITC) filter set (Fig. 2 A).

To select Actinomyces clones that had undergone the double-crossover event leading to chromosomal excision and loss of the plasmid, we inoculated a sample of bacteria carrying the integrated plasmid into HI broth overnight at 37°C. The bacterial culture was then serially passaged seven times with a 1:40 dilution in HI broth without antibiotics. Forty-microliter aliquots of the 10,000-fold-diluted final culture were plated onto HI agar plates. After 3 days of growth at 37°C, plates were screened for nonfluorescent colonies by using a FluorChem Q imaging system (Alpha Innotech, CA) with a Cy3 filter. The Cy3 filter was chosen because it produced brighter images than those produced by the Cy5 filter (data not shown) and the images were given with false green coloring (Fig. 2B). Of approximately 16,000 colonies that were screened (a procedure taking less than 30 min), 11 showed no fluorescence (an example indicated by an arrow is shown in Fig. 2C), corresponding to a frequency of ∼7.0 × 10−4. This is consistent with the low frequency of homologous recombination in A. oris (5). Nonfluorescent colonies were also confirmed to be sensitive to kanamycin (data not shown), and their genomic DNA was extracted for PCR and Southern blot analyses. For PCR analysis, primers P5 and P8 were used. As shown in Fig. 2D, 8 of the 11 isolates generated amplicons of approximately 2.2 kb, which is indicative of acaA deletion, while the remaining 3 isolates generated the expected wild-type amplicons of approximately 3.3 kb. For further confirmation, DNA samples from three acaA mutants and the wild-type strain MG-1 were analyzed by Southern blotting using a 550-bp probe generated by primers 5′-AGTCTCCAACGCATCCGTCTC-3′ and 5′-GTGTCCCGAGACATTGGCCGTG-3′. Based on sequence analysis of acaA and surrounding genes, digestion by PstI will generate a 3.4-kb fragment for the wild type. As expected, the probe hybridized to the 3.4-kb DNA fragment, which was missing from the three mutant samples (Fig. 2E). Thus, the lack of a hybridization signal for the three mutants further confirmed the absence of acaA in these mutants.

In summary, we have developed a facile allelic exchange system for A. oris that reduces the laborious step of screening for a double-crossover event to less than 30 min. To our knowledge, this is the first report of an application that employs a fluorescent protein as a positive selectable marker for gene disruption in bacteria. Conceptually, this strategy can be applied for gene disruption in any system.

FIG. 1.
  • Open in new tab
  • Download powerpoint
FIG. 1.

Construction of the nonreplicative delivery vector with red fluorescent mCherry protein as a counterselectable marker. The mCherry gene under the control of the A. oris rpsJ promoter was subcloned into the Escherichia coli/Actinomyces shuttle vector pJRD215 before being cloned into pHTT177, which is a derivative of pUC19. The resulting plasmid, pCWU3, has a kanamycin resistance cassette (kanR) and an MCS containing EcoRI, SacI, KpnI, BamHI, XbaI, SalI, and HindIII sites.

FIG. 2.
  • Open in new tab
  • Download powerpoint
FIG. 2.

Analysis of a gene deletion in A. oris. (A) A. oris cells expressing mCherry under the control of the rpsJ promoter were viewed with an Olympus inverted microscope using a TRITC filter. (B and C) Selection of A. oris acaA deletion mutants was performed with a FluorChem Q imaging system (Alpha Innotech, CA). Fluorescent cells appeared green (pseudocolored) with the Cy3 setting, while nonfluorescent cells (potential mutants, indicated by the white arrow in panel C) were gray. An enlarged area (indicated by the white box in panel B) is shown in panel C. (D and E) Nonfluorescent bacteria were further examined for the absence of the acaA gene by PCR amplification (D) and Southern blot analysis (E). Bands of approximately 2.2 kb indicate acaA deletion, whereas bands of approximately 3.3 kb indicate a wild-type (WT) genotype (D). Samples from the parent strain MG-1 (WT) and size markers (M) are indicated, and the black arrow marks a 3.4-kb hybridized fragment.

ACKNOWLEDGMENTS

We thank Roger Y. Tsien (UCSD) for pRSET-B-mCherry and Timothy Fothergill, I-Hsiu Huang, and Elizabeth Rogers (UTHSC—Houston) and members of our laboratory for critical review of the manuscript and discussion.

This work was supported by NIH grant DE017382 from the National Institute of Dental and Craniofacial Research to H.T.-T.

FOOTNOTES

    • Received 1 April 2010.
    • Accepted 20 June 2010.
  • Copyright © 2010 American Society for Microbiology

REFERENCES

  1. 1.↵
    Chen, P., J. O. Cisar, S. Hess, J. T. Ho, and K. P. Leung. 2007. Amended description of the genes for synthesis of Actinomyces naeslundii T14V type 1 fimbriae and associated adhesin. Infect. Immun.75:4181-4185.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    Davison, J., M. Heusterspreute, N. Chevalier, V. Ha-Thi, and F. Brunel. 1987. Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene51:275-280.
    OpenUrlCrossRefPubMed
  3. 3.↵
    Do, T., U. Henssge, S. C. Gilbert, D. Clark, and D. Beighton. 2008. Evidence for recombination between a sialidase (nanH) of Actinomyces naeslundii and Actinomyces oris, previously named ‘Actinomyces naeslundii genospecies 1 and 2.’ FEMS Microbiol. Lett.288:156-162.
    OpenUrlCrossRefPubMed
  4. 4.↵
    Kolenbrander, P. E., R. J. Palmer, Jr., A. H. Rickard, N. S. Jakubovics, N. I. Chalmers, and P. I. Diaz. 2006. Bacterial interactions and successions during plaque development. Periodontol. 200042:47-79.
    OpenUrlCrossRefPubMedWeb of Science
  5. 5.↵
    Mishra, A., A. Das, J. O. Cisar, and H. Ton-That. 2007. Sortase-catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J. Bacteriol.189:3156-3165.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    Shaner, N. C., R. E. Campbell, P. A. Steinbach, B. N. Giepmans, A. E. Palmer, and R. Y. Tsien. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol.22:1567-1572.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    Yeung, M. K. 1999. Molecular and genetic analyses of Actinomyces spp. Crit. Rev. Oral Biol. Med.10:120-138.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    Yeung, M. K., J. A. Donkersloot, J. O. Cisar, and P. A. Ragsdale. 1998. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect. Immun.66:1482-1491.
    OpenUrlAbstract/FREE Full Text
  9. 9.↵
    Yeung, M. K., and P. A. Ragsdale. 1997. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect. Immun.65:2629-2639.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Allelic Exchange in Actinomyces oris with mCherry Fluorescence Counterselection
Chenggang Wu, Hung Ton-That
Applied and Environmental Microbiology Jul 2010, 76 (17) 5987-5989; DOI: 10.1128/AEM.00811-10

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Allelic Exchange in Actinomyces oris with mCherry Fluorescence Counterselection
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Allelic Exchange in Actinomyces oris with mCherry Fluorescence Counterselection
Chenggang Wu, Hung Ton-That
Applied and Environmental Microbiology Jul 2010, 76 (17) 5987-5989; DOI: 10.1128/AEM.00811-10
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Actinomyces
Genes, Bacterial
Mutagenesis, Insertional
Recombination, Genetic

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336