Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Food Microbiology

Accumulation of Intracellular Glycogen and Trehalose by Propionibacterium freudenreichii under Conditions Mimicking Cheese Ripening in the Cold

Marion Dalmasso, Julie Aubert, Sergine Even, Hélène Falentin, Marie-Bernadette Maillard, Sandrine Parayre, Valentin Loux, Jarna Tanskanen, Anne Thierry
Marion Dalmasso
aINRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
bAgrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julie Aubert
cINRA, UMR518 Mathématiques et Informatique Appliquées, Paris, France
dAgroParisTech, UMR518 Mathématiques et Informatique Appliquées, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sergine Even
aINRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
bAgrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hélène Falentin
aINRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
bAgrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marie-Bernadette Maillard
aINRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
bAgrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sandrine Parayre
aINRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
bAgrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Valentin Loux
eINRA, UR1077 Mathématique, Informatique et Génome, Jouy-en-Josas, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jarna Tanskanen
fValio Ltd., Helsinki, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne Thierry
aINRA, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
bAgrocampus Ouest, UMR1253 Science et Technologie du Lait et de l'Œuf, Rennes, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.00561-12
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Fig 1
    • Open in new tab
    • Download powerpoint
    Fig 1

    Time course of metabolic activity of seven P. freudenreichii strains over a 40-h incubation at 30°C followed by a further 80 h at 4°C. Growth (OD650nm, optical density at 650 nm) (A), concentrations of methylbutanoate (sum of 2-methylbutanoate and 3-methylbutanoate) (B), propionate (C), and acetate (D). Error bars show the standard deviations of the results of triplicate independent experiments. The inset in panel A shows the growth curves at 4°C and 30°C. Values are means for the 7 strains: CIRM-BIA1T (×), CIRM-BIA9 (△), CIRM-BIA118 (□), CIRM-BIA122 (▲), CIRM-BIA123 (○), CIRM-BIA472 (●), CIRM-BIA482 (■).

  • Fig 2
    • Open in new tab
    • Download powerpoint
    Fig 2

    Number of differentially expressed genes (|fold change| > 1) after 80 h at 4°C in comparison with gene expression at the reference time of 20 h for seven P. freudenreichii strains (CIRM-BIA118, -122, -123, -1, -472, -482, and -9). Downregulated (white bars) or upregulated (black bars) genes with known functions are presented according to their metabolic category: E, energy metabolism; P, protein synthesis; T, transport of peptides and inorganic ions; AA, transport and metabolism of amino acids; CH, transport and metabolism of carbohydrates; A, adaptation to atypical conditions.

  • Fig 3
    • Open in new tab
    • Download powerpoint
    Fig 3

    Main routes of pyruvate formation and conversion in P. freudenreichii during storage at 4°C and relevant for this study. Genes upregulated at 4°C are shown in black, and downregulated genes in gray. Thick black arrows emphasize the metabolic pathways that are favored at 4°C, and thin gray arrows the pathways that are downregulated at 4°C. ace, pyruvate dehydrogenase, E1 component; ald, alanine dehydrogenase; ldh, l-lactate dehydrogenase; ppdk, pyruvate phosphate dikinase; sdaA, l-serine dehydratase; sdh, succinate dehydrogenase; CoA, coenzyme A. Values of fold changes are shown in Table 1, Table 4, and Fig. 5.

  • Fig 4
    • Open in new tab
    • Download powerpoint
    Fig 4

    Changes in expression of genes involved in trehalose and glycogen synthesis in P. freudenreichii (pathways adapted from Chandra et al. [3]). Each box shows the fold change, expressed as log2, for each gene in all seven strains (CIRM-BIA118, -122, -123, -1, -472, -482, and -9) after 80 h at 4°C in comparison with gene expression at the reference time (20 h). Values of |fold change (log2)| >1 and <−1 are shown in dark and light gray, respectively.

  • Fig 5
    • Open in new tab
    • Download powerpoint
    Fig 5

    Accumulation of intracellular glycogen and trehalose in P. freudenreichii CIRM-BIA1T during growth at 30°C (up to 40 h of incubation) and further incubation for 250 h at 4°C. Values are means of the results of triplicate independent experiments; error bars show standard deviations. eq, equivalent.

Tables

  • Figures
  • Table 1

    Differentially expressed genes involved in general cell machinery slowdown

    NameLocus tagaDescriptionCategorybP valueFold change (log2) for CIRM-BIA strainc:
    TimeStrainTime × strain11812212314724829
    cstAPFREUD_16500Carbon starvation proteinA<0.01<0.01<0.01−1.0−1.2−3.4−1.5−2.0−3.7−2.9
    ftsXPFREUD_09600Cell division proteinCD<0.01<0.01<0.01−2.1−1.7−2.4−4.7−1.7−3.8−4.3
    icdPFREUD_06870Putative isocitrate/isopropylmalate dehydrogenaseCH<0.01<0.010.05−1.0−3.3−2.0−3.0−3.4−3.3−3.0
    pccBPFREUD_07170Propionyl-coenzyme A carboxylase beta chainCH<0.010.01<0.01−1.2−1.6−0.4−1.8−1.8−1.5−1.2
    aceEPFREUD_09470Pyruvate dehydrogenase E1 componentCH<0.01<0.010.14−1.5−1.9−1.5−1.9−2.8−2.1−1.9
    lpdPFREUD_10890Dihydrolipoyl dehydrogenaseCH<0.010.280.44−0.5−0.9−0.7−1.5−2.2−0.8−1.1
    acnPFREUD_12590AconitaseCH<0.01<0.010.47−0.7−0.8−1.0−1.0−1.5−0.8−1.0
    cydAPFREUD_01720Cytochrome d ubiquinol oxidase, subunit IE<0.01<0.010.02−0.8−1.4−1.6−1.6−1.5−2.0−3.4
    cydBPFREUD_01730Cytochrome d ubiquinol oxidase, subunit IIE<0.01<0.010.03−1.0−1.3−1.3−1.1−0.7−0.9−2.2
    nuoAPFREUD_05160NADH-quinone oxidoreductase chain AE<0.01<0.010.02−1.4−1.2−0.5−2.0−1.3−2.2−2.0
    nuoBPFREUD_05170NADH-quinone oxidoreductase chain BE<0.01<0.01<0.01−1.9−1.8−1.0−2.3−1.4−3.3−2.3
    nuoCPFREUD_05180NADH-quinone oxidoreductase chain CE<0.01<0.01<0.01−1.9−1.7−1.3−3.8−2.3−3.7−3.4
    nuoDPFREUD_05190NADH-quinone oxidoreductase chain DE<0.01<0.01<0.01−2.0−1.9−1.6−3.8−2.7−4.9−5.2
    nuoEPFREUD_05200NADH-quinone oxidoreductase chain EE<0.01<0.01<0.01−2.0−1.9−1.9−2.9−2.5−4.0−3.3
    nuoFPFREUD_05210NADH-quinone oxidoreductase chain FE<0.01<0.010.08−2.2−2.0−1.9−2.7−2.4−3.4−2.9
    nuoGPFREUD_05220NADH-quinone oxidoreductase chain GE<0.01<0.010.08−2.0−1.5−1.9−1.9−2.2−2.8−3.1
    nuoHPFREUD_05230NADH-quinone oxidoreductase chain HE<0.01<0.010.01−1.8−1.0−1.6−0.9−1.6−2.4−1.7
    nuoIPFREUD_05240NADH-quinone oxidoreductase chain IE<0.01<0.010.09−2.5−1.0−1.6−1.4−2.3−3.0−2.9
    nuoJPFREUD_05250NADH-quinone oxidoreductase chain JE<0.01<0.010.02−2.1−1.1−1.7−1.5−2.0−3.3−2.1
    nuoKPFREUD_05260NADH dehydrogenase I chain KE<0.01<0.010.01−2.3−1.2−1.5−2.2−2.1−3.4−2.6
    nuoLPFREUD_05270NADH dehydrogenaseE<0.01<0.010.01−2.5−1.5−2.1−1.9−2.5−3.7−2.9
    nuoMPFREUD_05280NADH dehydrogenase I chain ME<0.01<0.010.01−2.3−1.1−1.7−1.3−2.4−3.2−2.9
    nuoNPFREUD_05290NADH dehydrogenase I chain NE<0.01<0.010.05−2.8−1.6−2.1−1.2−2.3−2.8−2.3
    sdhC1PFREUD_09240Succinate dehydrogenase, subunit CE<0.01<0.01<0.01−1.3−0.81.2−2.1−2.2−2.1−2.2
    sdhAPFREUD_09250Succinate dehydrogenase, subunit AE<0.01<0.01<0.01−2.1−1.20.5−2.7−2.9−3.2−3.4
    sdhBPFREUD_09260Succinate dehydrogenase, subunit BE<0.01<0.010.09−1.2−0.90.3−0.9−1.0−0.7−1.1
    atpBPFREUD_10430ATP synthase A chainE<0.01<0.010.03−2.0−1.6−1.5−2.8−2.6−3.3−2.5
    atpEPFREUD_10440ATP synthase C chainE<0.01<0.010.22−2.8−2.7−1.9−3.1−3.1−2.8−3.2
    atpFPFREUD_10450ATP synthase B chainE<0.01<0.010.30−2.9−3.0−2.1−2.3−2.7−2.7−2.6
    atpHPFREUD_10460ATP synthase delta chainE<0.010.250.06−2.8−2.8−2.4−3.4−3.5−3.0−3.6
    atpAPFREUD_10470ATP synthase subunit alphaE<0.010.340.21−3.0−2.6−2.5−3.6−3.6−3.7−3.5
    atpGPFREUD_10480ATP synthase gamma chainE<0.01<0.010.20−3.1−2.6−2.4−3.7−4.2−3.9−3.5
    atpDPFREUD_10490ATP synthase subunit betaE<0.010.050.38−2.9−2.3−2.2−3.0−3.2−3.1−3.2
    atpCPFREUD_10500ATP synthase epsilon chainE<0.010.120.23−3.8−2.5−2.4−3.0−3.6−3.2−3.8
    sdhB3PFREUD_14300Succinate dehydrogenaseE<0.01<0.010.02−2.8−2.6−0.6−2.4−2.4−2.7−4.2
    sdhA3PFREUD_14310Succinate dehydrogenase flavoprotein subunitE<0.01<0.01<0.01−2.5−2.5−0.3−3.0−2.2−2.6−4.3
    sdhC2PFREUD_14320Succinate dehydrogenase cytochrome B-558 subunitE<0.01<0.01<0.01−2.4−2.20.3−2.3−1.5−2.3−2.8
    • ↵a Locus tag for CIRM-BIA1T.

    • ↵b A, adaptation to atypical conditions; CD, cell division; CH, transport and metabolism of carbohydrates; E, energy metabolism.

    • ↵c Values of |fold change (log2)| >1 are in boldface.

  • Table 2

    Differentially expressed genes involved in cold stress response

    NameLocus tagaDescriptionCategorybP valueFold change (log2) for CIRM-BIA strainc:
    TimeStrainTime × strain11812212314724829
    pspCPFREUD_06710Possible stress response transcriptional regulator proteinA<0.01<0.01<0.013.82.02.93.52.64.34.0
    pspCPFREUD_06710Possible stress response transcriptional regulator proteinA<0.01<0.01<0.013.82.02.93.52.64.34.0
    cspAPFREUD_09800Cold shock-like proteinA<0.01<0.010.01−0.30.11.62.11.31.71.9
    cspBPFREUD_18210Cold shock proteinA<0.01<0.010.010.80.61.12.30.81.80.9
    PFREUD_04260DeaD/DeaH box helicaseDNA<0.01<0.010.210.30.70.71.20.91.00.8
    PFREUD_13460Superfamily II RNA helicase, DeaD/DeaH box helicaseDNA<0.01<0.010.041.31.21.52.00.91.91.8
    dnaK2PFREUD_04630Chaperone proteinPM<0.01<0.01<0.01−0.5−1.8−2.6−2.5−2.5−0.50.5
    grpE2PFREUD_04640Co-chaperone proteinPM<0.010.04<0.010.9−0.9−1.5−2.4−1.50.00.9
    dnaJ2PFREUD_04650Chaperone protein DnaJ2PM<0.01<0.01<0.01−0.3−0.9−1.4−1.1−0.70.40.6
    groS1PFREUD_0646010-kDa chaperonin 1PM<0.010.020.01−2.4−4.1−3.9−5.5−5.4−5.9−5.2
    groL1PFREUD_0647060-kDa chaperonin 1PM<0.010.240.22−3.0−3.9−3.8−4.0−4.6−4.9−4.7
    groS2PFREUD_0781010-kDa chaperonin 2PM<0.01<0.010.15−0.8−0.60.3−0.7−1.1−0.2−0.8
    dnaJ3PFREUD_08760Chaperone protein DnaJ3PM<0.01<0.01<0.01−0.40.0−0.6−1.6−1.3−0.3−0.8
    hsp20PFREUD_09500Heat shock protein 20 2PM<0.010.030.03−1.3−0.6−0.3−0.1−0.1−0.61.2
    dnaJ1PFREUD_17820Chaperone protein DnaJ1PM<0.01<0.01<0.01−2.80.0−2.2−2.7−1.6−2.3−2.2
    grpE1PFREUD_17830Co-chaperone proteinPM<0.01<0.01<0.01−3.00.1−2.8−3.2−2.0−3.0−2.3
    dnaK1PFREUD_17840Chaperone proteinPM<0.01<0.01<0.01−2.90.2−3.2−2.0−2.5−4.5−1.7
    clpB 2PFREUD_17920Chaperone proteinPM<0.01<0.01<0.01−2.9−0.4−3.5−3.3−2.1−1.9−4.1
    groL2PFREUD_1847060-kDa chaperonin 2PM<0.010.370.65−2.9−3.7−3.2−3.4−3.3−4.1−3.6
    clpB 1PFREUD_19250Chaperone proteinPM<0.01<0.01<0.011.90.7−1.30.80.22.71.2
    • ↵a Locus tag for CIRM-BIA1T.

    • ↵b A, adaptation to atypical conditions; DNA, DNA metabolism; PM, protein modification and folding.

    • ↵c Values of |fold change (log2)| >1 are in boldface.

  • Table 3

    Genes encoding esterases and branched-chain amino acid-converting enzymes

    Type of enzyme and nameLocus tagaDescriptionbCategorycP valueFold change (log2) for each CIRM-BIA straind:
    TimeStrainTime × strain11812212314724829
    Esterases
        pf1861PFREUD_03560Putative carboxylic ester hydrolaseL0.18<0.010.06−0.2−0.6−0.40.20.40.2−0.6
        pf774PFREUD_04240Putative carboxylic ester hydrolaseL0.60<0.010.110.4−0.7−0.40.30.2−0.30.6
        pf279PFREUD_04340Carboxylic ester hydrolaseL0.320.010.110.3−0.6−0.60.600.10.4
        pf962PFREUD_04810Carboxylic ester hydrolaseL<0.010.050.610.50.40.50.70.20.50.2
        pf1509PFREUD_10540Putative carboxylic ester hydrolaseL0.50<0.010.030.00.50.20.3−0.70.9−0.5
        pf1758-2887PFREUD_10790-PFREUD_10800Putative carboxylic ester hydrolaseseL0.570.020.34−0.3−0.2−0.3—c0.20.5—c
        pf1637PFREUD_12910Putative carboxylic ester hydrolaseL<0.01<0.010.070.0−0.40.30.0−0.8−0.3−0.4
        pf379PFREUD_13000Putative carboxylic ester hydrolaseL<0.01<0.01<0.010.80.70.61.20.61.60.6
        pf169PFREUD_14330Carboxylic ester hydrolaseL0.130.190.13−0.1−0.2−0.10.30.10.50.1
        pf1655PFREUD_18110Carboxylic ester hydrolaseL0.59<0.010.550.30.7−0.4−0.100−0.3
        pf667PFREUD_23150Carboxylic ester hydrolaseL<0.01<0.01<0.010.1−0.10.20.90.30.5−0.2
        pf2042PFREUD_23770Putative carboxylic ester hydrolaseL<0.01<0.010.04−0.3−0.6−0.6−0.20.1−0.6−0.4
    Branched-chain amino acid transport and conversion
        livGPFREUD_10850ABC protein of branched-chain amino acid ABC transporterAA<0.01<0.010.02−1.4−0.8−2.3−3.6−2.4−3−2.1
        braEPFREUD_10860IM protein of branched-chain amino acid ABC transporterAA<0.01<0.01<0.01−0.5−0.3−0.8−1.5−1.1−1.5−0.6
        braDPFREUD_10870IM protein of branched-chain amino acid ABC transporterAA<0.01<0.01<0.01−1.0−0.4−1.3−1.9−1−2.4−0.9
        braCPFREUD_10880BP of branched-chain amino acid ABC transporterAA<0.01<0.010.01−1.0−0.5−1.2−2.9−1.6−2.2−0.6
        ydaOPFREUD_12690IM protein of branched-chain amino acid ABC transporterAA<0.01<0.010.06−2.1−2−1.6−2.4−1.9−2.4−2.2
        ilvEPFREUD_13350Branched-chain amino acid aminotransferaseAA0.450.010.10−0.20.2−0.40.3−1.50.40.4
        bkdA2PFREUD_022002-Oxoisovalerate dehydrogenase subunit betaAA<0.01<0.010.03−2.1−3.7−2.0−3.3−3.3−3.5−3.9
        bkdBPFREUD_02210Dihydrolipoyllysine residue (2-methylpropanoyl) transferaseAA<0.01<0.010.03−0.8−1.7−0.7−1.8−1.4−0.7−1.5
    • ↵a Locus tag for CIRM-BIA1T.

    • ↵b IM, integral membrane; BP, binding protein.

    • ↵c L, lipid metabolism; AA, transport and metabolism of amino acids.

    • ↵d Values of |fold change (log2)| >1 are in boldface.

    • ↵e This gene presents a frameshift in strains CIRM-BIA1T and CIRM-BIA9.

  • Table 4

    Differentially expressed genes involved in pyruvate generation and rerouting toward trehalose and glycogen synthesis

    Function and nameLocus tagaDescriptionCategorybP valueFold change (log2) for each CIRM-BIA strainc:
    TimeStrainTime × strain11812212314724829
    Generation of energy
        ppaPFREUD_23500Inorganic pyrophosphatasePh<0.01<0.01<0.012.51.81.73.32.72.82.5
    Generation of pyruvate
        aldPFREUD_00370Alanine dehydrogenaseAA<0.01<0.01<0.013.74.51.17.53.22.04.3
        sdaAPFREUD_18570l-Serine dehydrataseAA<0.01<0.01<0.011.61.30.52.01.01.90.9
        ldh2PFREUD_12840l-Lactate dehydrogenaseCH<0.010.020.011.52.01.31.31.71.80.4
    Gluconeogenesis
        ppdkPFREUD_03230Pyruvate phosphate dikinaseCH<0.01<0.01<0.011.31.2−0.61.90.90.30.6
        eno1PFREUD_17320Enolase 1CH<0.01<0.010.011.110.62.61.91.71.1
        eno2PFREUD_17250Enolase 2CH<0.01<0.010.021.21.20.70.61.31.10.7
        fba1PFREUD_19150Fructose-bisphosphate aldolase class IICH<0.01<0.010.33−0.5−1.2−0.3−1.0−0.7−0.6−1.0
        fba2PFREUD_23890Fructose-bisphosphate aldolase class ICH<0.01<0.01<0.012.52.40.53.92.31.22.2
        pgiPFREUD_04290Glucose-6-phosphate isomeraseCH<0.01<0.01<0.011.00.40.51.60.81.21.5
    • ↵a Locus tag in CIRM-BIA1T.

    • ↵b Ph, metabolism of phosphate; AA, transport and metabolism of amino acids; CH, transport and metabolism of carbohydrates.

    • ↵c Values of |fold change (log2)| >1 are in boldface.

PreviousNext
Back to top
Download PDF
Citation Tools
Accumulation of Intracellular Glycogen and Trehalose by Propionibacterium freudenreichii under Conditions Mimicking Cheese Ripening in the Cold
Marion Dalmasso, Julie Aubert, Sergine Even, Hélène Falentin, Marie-Bernadette Maillard, Sandrine Parayre, Valentin Loux, Jarna Tanskanen, Anne Thierry
Applied and Environmental Microbiology Aug 2012, 78 (17) 6357-6364; DOI: 10.1128/AEM.00561-12

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Accumulation of Intracellular Glycogen and Trehalose by Propionibacterium freudenreichii under Conditions Mimicking Cheese Ripening in the Cold
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Accumulation of Intracellular Glycogen and Trehalose by Propionibacterium freudenreichii under Conditions Mimicking Cheese Ripening in the Cold
Marion Dalmasso, Julie Aubert, Sergine Even, Hélène Falentin, Marie-Bernadette Maillard, Sandrine Parayre, Valentin Loux, Jarna Tanskanen, Anne Thierry
Applied and Environmental Microbiology Aug 2012, 78 (17) 6357-6364; DOI: 10.1128/AEM.00561-12
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • TEXT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336