Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Public and Environmental Health Microbiology

Ammonia as an In Situ Sanitizer: Influence of Virus Genome Type on Inactivation

Loïc Decrey, Shinobu Kazama, Tamar Kohn
D. W. Schaffner, Editor
Loïc Decrey
aLaboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shinobu Kazama
aLaboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
bNew Industry Creation Hatchery Center (NICHe), Sendai, Miyagi, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shinobu Kazama
Tamar Kohn
aLaboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. W. Schaffner
Rutgers, The State University of New Jersey
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.01106-16
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Treatment of human excreta and animal manure (HEAM) is key in controlling the spread of persistent enteric pathogens, such as viruses. The extent of virus inactivation during HEAM storage and treatment appears to vary with virus genome type, although the reasons for this variability are not clear. Here, we investigated the inactivation of viruses of different genome types under conditions representative of HEAM storage or mesophilic digestion. The goals were to characterize the influence of HEAM solution conditions on inactivation and to determine the potential mechanisms involved. Specifically, eight viruses representing the four viral genome types (single-stranded RNA [ssRNA], double-stranded RNA [dsRNA], single-stranded DNA [ssDNA], and double-stranded DNA [dsDNA]) were exposed to synthetic solutions with well-controlled temperature (20 to 35°C), pH (8 to 9), and ammonia (NH3) concentrations (0 to 40 mmol liter−1). DNA and dsRNA viruses were considerably more resistant than ssRNA viruses, resulting in up to 1,000-fold-longer treatment times to reach a 4-log inactivation. The apparently slower inactivation of DNA viruses was rationalized by the higher stability of DNA than that of ssRNA in HEAM. Pushing the system toward harsher pH (>9) and temperature (>35°C) conditions, such as those encountered in thermophilic digestion and alkaline treatments, led to more consistent inactivation kinetics among ssRNA and other viruses. This suggests that the dependence of inactivation on genome type disappeared in favor of protein-mediated inactivation mechanisms common to all viruses. Finally, we recommend the use of MS2 as a conservative indicator to assess the inactivation of ssRNA viruses and the stable ΦX174 or dsDNA phages as indicators for persistent viruses.

IMPORTANCE Viruses are among the most environmentally persistent pathogens. They can be present in high concentrations in human excreta and animal manure (HEAM). Therefore, appropriate treatment of HEAM is important prior to its reuse or discharge into the environment. Here, we investigated the factors that determine the persistence of viruses in HEAM, and we determined the main mechanisms that lead to their inactivation. Unlike other organisms, viruses can have four different genome types (double- or single-stranded RNA or DNA), and the viruses studied herein represent all four types. Genome type appeared to be the major determinant for persistence. Single-stranded RNA viruses are the most labile, because this genome type is susceptible to degradation in HEAM. In contrast, the other genome types are more stable; therefore, inactivation is slower and mainly driven by the degradation of viral proteins. Overall, this study allows us to better understand the behavior of viruses in HEAM.

FOOTNOTES

    • Received 10 April 2016.
    • Accepted 26 May 2016.
    • Accepted manuscript posted online 3 June 2016.
  • Supplemental material for this article may be found at http://dx.doi.org/10.1128/AEM.01106-16.

  • Copyright © 2016, American Society for Microbiology. All Rights Reserved.
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Ammonia as an In Situ Sanitizer: Influence of Virus Genome Type on Inactivation
Loïc Decrey, Shinobu Kazama, Tamar Kohn
Applied and Environmental Microbiology Jul 2016, 82 (16) 4909-4920; DOI: 10.1128/AEM.01106-16

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Ammonia as an In Situ Sanitizer: Influence of Virus Genome Type on Inactivation
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Ammonia as an In Situ Sanitizer: Influence of Virus Genome Type on Inactivation
Loïc Decrey, Shinobu Kazama, Tamar Kohn
Applied and Environmental Microbiology Jul 2016, 82 (16) 4909-4920; DOI: 10.1128/AEM.01106-16
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336