Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Genetics and Molecular Biology

Chromosomally Encoded hok-sok Toxin-Antitoxin System in the Fire Blight Pathogen Erwinia amylovora: Identification and Functional Characterization

Jingyu Peng, Lindsay R. Triplett, Jeffrey K. Schachterle, George W. Sundin
Emma R. Master, Editor
Jingyu Peng
aDepartment of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jingyu Peng
Lindsay R. Triplett
bDepartment of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jeffrey K. Schachterle
aDepartment of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George W. Sundin
aDepartment of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for George W. Sundin
Emma R. Master
University of Toronto
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.00724-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Toxin-antitoxin (TA) systems are genetic elements composed of a protein toxin and a counteracting antitoxin that is either a noncoding RNA or protein. In type I TA systems, the antitoxin is a noncoding small RNA (sRNA) that base pairs with the cognate toxin mRNA interfering with its translation. Although type I TA systems have been extensively studied in Escherichia coli and a few human or animal bacterial pathogens, they have not been characterized in plant-pathogenic bacteria. In this study, we characterized a chromosomal locus in the plant pathogen Erwinia amylovora Ea1189 that is homologous to the hok-sok type I TA system previously identified in the Enterobacteriaceae-restricted plasmid R1. Phylogenetic analysis indicated that the chromosomal location of the hok-sok locus is, thus far, unique to E. amylovora. We demonstrated that ectopic overexpression of hok is highly toxic to E. amylovora and that the sRNA sok reversed the toxicity of hok through mok, a reading frame presumably translationally coupled with hok. We also identified the region that is essential for maintenance of the main toxicity of Hok. Through a hok-sok deletion mutant (Ea1189Δhok-sok), we determined the contribution of the hok-sok locus to cellular growth, micromorphology, and catalase activity. Combined, our findings indicate that the hok-sok TA system, besides being potentially self-toxic, provides fitness advantages to E. amylovora.

IMPORTANCE Bacterial toxin-antitoxin systems have received great attention because of their potential as targets for antimicrobial development and as tools for biotechnology. Erwinia amylovora, the causal agent of fire blight disease on pome fruit trees, is a major plant-pathogenic bacterium. In this study, we identified and functionally characterized a unique chromosomally encoded hok-sok toxin-antitoxin system in E. amylovora that resembles the plasmid-encoded copies of this system in other Enterobacteriaceae. This study of a type I toxin-antitoxin system in a plant-pathogenic bacterium provides the basis to further understand the involvement of toxin-antitoxin systems during infection by a plant-pathogenic bacterium. The new linkage between the hok-sok toxin-antitoxin system and the catalase-mediated oxidative stress response leads to additional considerations of targeting this system for antimicrobial development.

FOOTNOTES

    • Received 27 March 2019.
    • Accepted 8 May 2019.
    • Accepted manuscript posted online 17 May 2019.
  • Supplemental material for this article may be found at https://doi.org/10.1128/AEM.00724-19.

  • Copyright © 2019 American Society for Microbiology.

All Rights Reserved.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Chromosomally Encoded hok-sok Toxin-Antitoxin System in the Fire Blight Pathogen Erwinia amylovora: Identification and Functional Characterization
Jingyu Peng, Lindsay R. Triplett, Jeffrey K. Schachterle, George W. Sundin
Applied and Environmental Microbiology Jul 2019, 85 (15) e00724-19; DOI: 10.1128/AEM.00724-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chromosomally Encoded hok-sok Toxin-Antitoxin System in the Fire Blight Pathogen Erwinia amylovora: Identification and Functional Characterization
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Chromosomally Encoded hok-sok Toxin-Antitoxin System in the Fire Blight Pathogen Erwinia amylovora: Identification and Functional Characterization
Jingyu Peng, Lindsay R. Triplett, Jeffrey K. Schachterle, George W. Sundin
Applied and Environmental Microbiology Jul 2019, 85 (15) e00724-19; DOI: 10.1128/AEM.00724-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

catalase
fire blight
hok-sok
type I TA systems

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336