Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Physiology

Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses

Todsapol Techo, Sirada Charoenpuntaweesin, Choowong Auesukaree
Irina S. Druzhinina, Editor
Todsapol Techo
aDepartment of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
bCenter of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
cMahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sirada Charoenpuntaweesin
aDepartment of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Choowong Auesukaree
aDepartment of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
bCenter of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand
cMahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok, Thailand
dDepartment of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
eCenter of Excellence on Biodiversity, CHE, Ministry of Education, Bangkok, Thailand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Choowong Auesukaree
Irina S. Druzhinina
Nanjing Agricultural University
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.01339-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Contamination of soil and water with heavy metals and metalloids is a serious environmental problem. Cadmium and arsenic are major environmental contaminants that pose a serious threat to human health. Although toxicities of cadmium and arsenic to living organisms have been extensively studied, the molecular mechanisms of cellular responses to cadmium and arsenic remain poorly understood. In this study, we demonstrate that the cell wall integrity (CWI) pathway is involved in coping with cell wall stresses induced by cadmium and arsenate through its role in the regulation of cell wall modification. Interestingly, the Rlm1p and SBF (Swi4p-Swi6p) complex transcription factors of the CWI pathway were shown to be specifically required for tolerance to cadmium and arsenate, respectively. Furthermore, we found the PIR2 gene, encoding cell wall O-mannosylated heat shock protein, whose expression is under the control of the CWI pathway, is important for maintaining cell wall integrity during cadmium and arsenate stresses. In addition, our results revealed that the CWI pathway is involved in modulating the expression of genes involved in cell wall biosynthesis and cell cycle control in response to cadmium and arsenate via distinct sets of transcriptional regulators.

IMPORTANCE Environmental pollution by metal/metalloids such as cadmium and arsenic has become a serious problem in many countries, especially in developing countries. This study shows that in the yeast S. cerevisiae, the CWI pathway plays a protective role against cadmium and arsenate through the upregulation of genes involved in cell wall biosynthesis and cell cycle control, possibly in order to modulate cell wall reconstruction and cell cycle phase transition, respectively. These data provide insights into molecular mechanisms underlying adaptive responses to cadmium and arsenate.

  • Copyright © 2020 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses
Todsapol Techo, Sirada Charoenpuntaweesin, Choowong Auesukaree
Applied and Environmental Microbiology Oct 2020, 86 (21) e01339-20; DOI: 10.1128/AEM.01339-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses
Todsapol Techo, Sirada Charoenpuntaweesin, Choowong Auesukaree
Applied and Environmental Microbiology Oct 2020, 86 (21) e01339-20; DOI: 10.1128/AEM.01339-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

cadmium
arsenate
cell wall integrity pathway
cell wall remodeling
cell cycle control
Saccharomyces cerevisiae

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336