Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Microbial Ecology | Spotlight

Phylotype-Level Characterization of Complex Communities of Lactobacilli Using a High-Throughput, High-Resolution Phenylalanyl-tRNA Synthetase (pheS) Gene Amplicon Sequencing Approach

Shaktheeshwari Silvaraju, Nandita Menon, Huan Fan, Kevin Lim, Sandra Kittelmann
Danilo Ercolini, Editor
Shaktheeshwari Silvaraju
aWilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nandita Menon
aWilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Huan Fan
aWilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Huan Fan
Kevin Lim
aWilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sandra Kittelmann
aWilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sandra Kittelmann
Danilo Ercolini
University of Naples Federico II
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.02191-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The lactobacilli identified to date encompass more than 270 closely related species that were recently reclassified into 26 genera. Because of their relevance to industry, there is a need to distinguish between closely related and yet metabolically and regulatory distinct species, e.g., during monitoring of biotechnological processes or screening of samples of unknown composition. Current available methods, such as shotgun metagenomics or rRNA gene-based amplicon sequencing, have significant limitations (high cost, low resolution, etc.). Here, we generated a phylogeny of lactobacilli based on phenylalanyl-tRNA synthetase (pheS) genes and, from it, developed a high-resolution taxonomic framework which allows for comprehensive and confident characterization of the community diversity and structure of lactobacilli at the species level. This framework is based on a total of 445 pheS gene sequences, including sequences of 276 validly described species and subspecies (of a total of 282, including the proposed L. timonensis species and the reproposed L. zeae species; coverage of 98%), and allows differentiation between 265 species-level clades of lactobacilli and the subspecies of L. sakei. The methodology was validated through next-generation sequencing of mock communities. At a sequencing depth of ∼30,000 sequences, the minimum level of detection was approximately 0.02 pg per μl DNA (equaling approximately 10 genome copies per μl template DNA). The pheS approach, along with parallel sequencing of partial 16S rRNA genes, revealed considerable diversity of lactobacilli and distinct community structures across a broad range of samples from different environmental niches. This novel complementary approach may be applicable to industry and academia alike.

IMPORTANCE Species formerly classified within the genera Lactobacillus and Pediococcus have been studied extensively at the genomic level. To accommodate their exceptional functional diversity, the over 270 species were recently reclassified into 26 distinct genera. Despite their relevance to both academia and industry, methods that allow detailed exploration of their ecology are still limited by low resolution, high cost, or copy number variations. The approach described here makes use of a single-copy marker gene which outperforms other markers with regard to species-level resolution and availability of reference sequences (98% coverage). The tool was validated against a mock community and used to address diversity of lactobacilli and community structure in various environmental matrices. Such analyses can now be performed at a broader scale to assess and monitor the assembly, structure, and function of communities of lactobacilli at the species level (and, in some cases, even at the subspecies level) across a wide range of academic and commercial applications.

FOOTNOTES

    • Received 8 September 2020.
    • Accepted 6 October 2020.
    • Accepted manuscript posted online 23 October 2020.
  • Supplemental material is available online only.

  • Copyright © 2020 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
Phylotype-Level Characterization of Complex Communities of Lactobacilli Using a High-Throughput, High-Resolution Phenylalanyl-tRNA Synthetase (pheS) Gene Amplicon Sequencing Approach
Shaktheeshwari Silvaraju, Nandita Menon, Huan Fan, Kevin Lim, Sandra Kittelmann
Applied and Environmental Microbiology Dec 2020, 87 (1) e02191-20; DOI: 10.1128/AEM.02191-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Phylotype-Level Characterization of Complex Communities of Lactobacilli Using a High-Throughput, High-Resolution Phenylalanyl-tRNA Synthetase (pheS) Gene Amplicon Sequencing Approach
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Phylotype-Level Characterization of Complex Communities of Lactobacilli Using a High-Throughput, High-Resolution Phenylalanyl-tRNA Synthetase (pheS) Gene Amplicon Sequencing Approach
Shaktheeshwari Silvaraju, Nandita Menon, Huan Fan, Kevin Lim, Sandra Kittelmann
Applied and Environmental Microbiology Dec 2020, 87 (1) e02191-20; DOI: 10.1128/AEM.02191-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS AND DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

amplicon sequencing
fermented food
host-associated lactobacilli
lactobacillus
Pediococcus
taxonomic framework

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336