Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Microbial Ecology

Dietary Phytase- and Lactic Acid-Treated Cereals Caused Greater Taxonomic Adaptations than Functional Adaptations in the Cecal Metagenome of Growing Pigs

Jutamat Klinsoda, Julia Vötterl, Simone Koger, Barbara U. Metzler-Zebeli
Danilo Ercolini, Editor
Jutamat Klinsoda
aInstitute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Vienna, Austria
bInstitute of Food Research and Product Development, University of Kasetsart, Bangkok, Thailand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julia Vötterl
aInstitute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Simone Koger
aInstitute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Barbara U. Metzler-Zebeli
cInstitute of Physiology, Pathophysiology and Biophysics, Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Barbara U. Metzler-Zebeli
Danilo Ercolini
University of Naples Federico II
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.02240-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Phosphorus (P) is an essential nutrient for the gut bacteria and the host. Nevertheless, little information exists that indicates to what extent an improved level of P availability in the small intestine leads to functional adaptations in bacterial metabolic pathways in the large intestine. Therefore, we investigated the changes in the taxonomic and functional bacterial metagenome in cecal digesta of growing pigs fed diets containing phytase and/or cereals treated with 2.5% lactic acid (LA) for 19 days (n = 8/diet) using shotgun metagenome sequencing. The phytase supplementation resulted in strikingly distinct bacterial communities, affecting almost all major bacterial families, whereas functional changes were less dramatic among the feeding groups. While phytase treatment decreased predominant Prevotellaceae levels, it seemed that Clostridiaceae, Ruminococcaceae, and Lachnospiraceae filled the opening metabolic niches (P < 0.05). The LA-treated cereals mediated reduced levels of Bacteroidaceae and increased levels of Veillonellaceae, but those results were mainly seen when the cereals were fed as a single treatment (P < 0.05). In association with the taxonomic alterations, phytase caused changes within the major functional pathways corresponding to amino acid metabolism; translation; membrane transport; folding, sorting, and degradation; and energy metabolism, whereas the LA treatment of cereals resulted in decreased enzymatic capacities within the carbohydrate metabolism and energy metabolism pathways (P < 0.05). Metabolic dependencies corresponding to the starch and sucrose metabolism, glycolysis/gluconeogenesis, and citrate cycle pathways were indicated by diet-associated changes in enzymatic capacities related to short-chain fatty acid, methane, vitamin, and bacterial antigen synthesis. Accordingly, the present results support the idea of the importance of the availability of intestinal P for bacterial metabolism. However, the functional profiles were less different than the taxonomic profiles among the dietary treatment results, indicating a certain degree of metabolic plasticity within the cecal metagenome.

IMPORTANCE Dietary strategies (e.g., phytase supplementation and lactic acid [LA] treatment of cereals) used to improve the availability of phytate-phosphorus (P) from pig feed reduce the amount of P flowing into the large intestine, whereas LA treatment-induced changes in nutrient fractions alter the substrate being available to the microbiota. In ruminants, lower intestinal P availability compromises the fibrolytic activity of the microbiome. Here, we report that the functional capacities were less dramatically affected than the taxonomic composition by phytase-supplemented and LA-treated cereals. The bacterial community appeared to be partly capable of functionally compensating for the altered flow of P by replacing taxa with higher P needs by those with lower P needs. Therefore, by acting as mucosal immune stimulants, alterations in microbiota-associated molecular patterns (MAMPs) due to the taxonomic shifts may play a greater role for host physiology and health than functional differences caused by differing intestinal P availabilities, which merits further research.

FOOTNOTES

    • Received 11 September 2020.
    • Accepted 13 October 2020.
    • Accepted manuscript posted online 23 October 2020.
  • Supplemental material is available online only.

  • Copyright © 2020 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
Dietary Phytase- and Lactic Acid-Treated Cereals Caused Greater Taxonomic Adaptations than Functional Adaptations in the Cecal Metagenome of Growing Pigs
Jutamat Klinsoda, Julia Vötterl, Simone Koger, Barbara U. Metzler-Zebeli
Applied and Environmental Microbiology Dec 2020, 87 (1) e02240-20; DOI: 10.1128/AEM.02240-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Dietary Phytase- and Lactic Acid-Treated Cereals Caused Greater Taxonomic Adaptations than Functional Adaptations in the Cecal Metagenome of Growing Pigs
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Dietary Phytase- and Lactic Acid-Treated Cereals Caused Greater Taxonomic Adaptations than Functional Adaptations in the Cecal Metagenome of Growing Pigs
Jutamat Klinsoda, Julia Vötterl, Simone Koger, Barbara U. Metzler-Zebeli
Applied and Environmental Microbiology Dec 2020, 87 (1) e02240-20; DOI: 10.1128/AEM.02240-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

cecum
metagenome
lactic acid treatment of cereal grains
pig
phytase

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336