Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Plant Microbiology

The Actin Cytoskeleton Mediates Transmission of “Candidatus Liberibacter solanacearum” by the Carrot Psyllid

Poulami Sarkar, Svetlana Kontsedalov, Galina Lebedev, Murad Ghanim
Gladys Alexandre, Editor
Poulami Sarkar
aDepartment of Entomology, The Volcani Center, Rishon LeZion, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Svetlana Kontsedalov
aDepartment of Entomology, The Volcani Center, Rishon LeZion, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Galina Lebedev
aDepartment of Entomology, The Volcani Center, Rishon LeZion, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Murad Ghanim
aDepartment of Entomology, The Volcani Center, Rishon LeZion, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Murad Ghanim
Gladys Alexandre
University of Tennessee at Knoxville
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.02393-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Several vector-borne plant pathogens have evolved mechanisms to exploit and to hijack vector host cellular, molecular, and defense mechanisms for their transmission. In the past few years, Liberibacter species, which are transmitted by several psyllid vectors, have become an economically important group of pathogens that have devastated the citrus industry and caused tremendous losses to many other important crops worldwide. The molecular mechanisms underlying the interactions of Liberibacter species with their psyllid vectors are poorly studied. “Candidatus Liberibacter solanacearum,” which is associated with important vegetable diseases, is transmitted by the carrot psyllid Bactericera trigonica in a persistent manner. Here, we elucidated the role of the B. trigonica Arp2/3 protein complex, which plays a major role in regulation of the actin cytoskeleton, in the transmission of “Ca. Liberibacter solanacearum.” “Ca. Liberibacter solanacearum” colocalized with ArpC2, a key protein in this complex, and this colocalization was strongly associated with actin filaments. Silencing of the psyllid ArpC2 disrupted the colocalization and the dynamics of F-actin. Silencing of RhoGAP21 and Cdc42, which act in the signaling cascade leading to upregulation of Arp2/3 and F-actin bundling, showed similar results. On the other hand, silencing of ArpC5, another component of the complex, did not induce any significant effects on F-actin formation. Finally, ArpC2 silencing caused a 73.4% reduction in “Ca. Liberibacter solanacearum” transmission by psyllids, strongly suggesting that transmission of “Ca. Liberibacter solanacearum” by B. trigonica is cytoskeleton dependent and “Ca. Liberibacter solanacearum” interacts with ArpC2 to exploit the intracellular actin nucleation process for transmission. Targeting this unique interaction could lead to the development of a novel strategy for the management of Liberibacter-associated diseases.

IMPORTANCE Plant diseases caused by vector-borne pathogens are responsible for tremendous losses and threaten some of the most important agricultural crops. A good example is the citrus greening disease, which is caused by bacteria of the genus Liberibacter and is transmitted by psyllids; it has devastated the citrus industry in the United States, China, and Brazil. Here, we show that psyllid-transmitted “Candidatus Liberibacter solanacearum” employs the actin cytoskeleton of psyllid gut cells, specifically the ArpC2 protein in the Arp2/3 complex of this system, for movement and transmission in the vector. Silencing of ArpC2 dramatically influenced the interaction of “Ca. Liberibacter solanacearum” with the cytoskeleton and decreased the bacterial transmission to plants. This system could be targeted to develop a novel approach for the control of Liberibacter-associated diseases.

  • Copyright © 2021 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
The Actin Cytoskeleton Mediates Transmission of “Candidatus Liberibacter solanacearum” by the Carrot Psyllid
Poulami Sarkar, Svetlana Kontsedalov, Galina Lebedev, Murad Ghanim
Applied and Environmental Microbiology Jan 2021, 87 (3) e02393-20; DOI: 10.1128/AEM.02393-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Actin Cytoskeleton Mediates Transmission of “Candidatus Liberibacter solanacearum” by the Carrot Psyllid
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The Actin Cytoskeleton Mediates Transmission of “Candidatus Liberibacter solanacearum” by the Carrot Psyllid
Poulami Sarkar, Svetlana Kontsedalov, Galina Lebedev, Murad Ghanim
Applied and Environmental Microbiology Jan 2021, 87 (3) e02393-20; DOI: 10.1128/AEM.02393-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Liberibacter
psyllid
vector
Arp2/3 complex
transmission

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336