Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Applied and Environmental Microbiology
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AEM
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Evolutionary and Genomic Microbiology

Triclosan Tolerance Is Driven by a Conserved Mechanism in Diverse Pseudomonas Species

Alexander G. McFarland, Hanna K. Bertucci, Erica Littman, Jiaxian Shen, Curtis Huttenhower, Erica M. Hartmann
Harold L. Drake, Editor
Alexander G. McFarland
aDepartment of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hanna K. Bertucci
aDepartment of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erica Littman
aDepartment of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jiaxian Shen
aDepartment of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Curtis Huttenhower
bHarvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
cDepartment of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
dInfectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Erica M. Hartmann
aDepartment of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Erica M. Hartmann
Harold L. Drake
University of Bayreuth
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AEM.02924-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Perturbation of natural microbial communities by antimicrobials, such as triclosan, can result in selection for antibiotic tolerance, which is of particular concern when pathogens are present. Members of the genus Pseudomonas are found in many natural microbial communities and frequently demonstrate increased abundance following triclosan exposure. The pathogen and well-studied model organism Pseudomonas aeruginosa exhibits high triclosan tolerance; however, it is unknown if all Pseudomonas species share this trait or if there are susceptible strains. We characterized the triclosan tolerance phenotypes of diverse Pseudomonas isolates obtained from triclosan-exposed built environments and identified both tolerant and sensitive strains. High tolerance is associated with carriage of the enoyl-acyl carrier reductase (ENR) isozyme gene fabV, compared to the lesser protective effects of efflux or presence of ENRs. Given its unique importance, we examined fabV distribution throughout Pseudomonas species using large-scale phylogenomic analyses. We find fabV presence or absence is largely invariant at the species level but demonstrates multiple gain and loss events in its evolutionary history. We further provide evidence of its presence on mobile genetic elements. Our results demonstrate the surprising variability in triclosan tolerance in Pseudomonas and confirm fabV to be a useful indicator for high triclosan tolerance in Pseudomonas. These findings provide a framework for better monitoring of Pseudomonas in triclosan-exposed environments and interpreting effects on species and gene composition.

IMPORTANCE Closely related species are typically assumed to demonstrate similar phenotypes driven by underlying conserved genotypes. When monitoring for the effect of antimicrobials on the types of species that may be selected for, this assumption may prove to be incorrect, and identification of additional genetic markers may be necessary. We isolated several phylogenetically diverse members of Pseudomonas from indoor environments and tested their phenotypic tolerance toward the commonly used antimicrobial triclosan. Although Pseudomonas isolates are broadly regarded to be highly triclosan tolerant, we demonstrate the presence of both triclosan-tolerant and -susceptible strains, separated by a difference in tolerance of nearly 3 orders of magnitude. Bioinformatic and experimental investigation demonstrated that the presence of the gene fabV was associated with high tolerance. We demonstrate that fabV is not evenly distributed in all Pseudomonas species and that its presence could be a useful predictor of high triclosan tolerance suitable for antimicrobial monitoring efforts involving triclosan.

FOOTNOTES

    • Received 1 December 2020.
    • Accepted 20 January 2021.
    • Accepted manuscript posted online 22 January 2021.
  • Supplemental material is available online only.

  • Copyright © 2021 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
Triclosan Tolerance Is Driven by a Conserved Mechanism in Diverse Pseudomonas Species
Alexander G. McFarland, Hanna K. Bertucci, Erica Littman, Jiaxian Shen, Curtis Huttenhower, Erica M. Hartmann
Applied and Environmental Microbiology Mar 2021, 87 (7) e02924-20; DOI: 10.1128/AEM.02924-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Applied and Environmental Microbiology article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Triclosan Tolerance Is Driven by a Conserved Mechanism in Diverse Pseudomonas Species
(Your Name) has forwarded a page to you from Applied and Environmental Microbiology
(Your Name) thought you would be interested in this article in Applied and Environmental Microbiology.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Triclosan Tolerance Is Driven by a Conserved Mechanism in Diverse Pseudomonas Species
Alexander G. McFarland, Hanna K. Bertucci, Erica Littman, Jiaxian Shen, Curtis Huttenhower, Erica M. Hartmann
Applied and Environmental Microbiology Mar 2021, 87 (7) e02924-20; DOI: 10.1128/AEM.02924-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

antimicrobials
genomics
horizontal gene transfer
microbiology
phylogenetics

Related Articles

Cited By...

About

  • About AEM
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AppEnvMicro

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

 

Print ISSN: 0099-2240; Online ISSN: 1098-5336