Dextran Sodium Sulfate-Induced Inflammation Alters the Expression of Proteins by Intestinal Escherichia coli Strains in a Gnotobiotic Mouse Model

Sara Schumann, Carl Alpert, Wolfram Engst, Gunnar Loh, and Michael Blaut

To identify Escherichia coli proteins involved in adaptation to intestinal inflammation, mice were monoassociated with the colitogenic E. coli strain UNC or with the probiotic E. coli strain Nissle. Intestinal inflammation was induced by treating the mice with 3.5% dextran sodium sulfate (DSS). Differentially expressed proteins in E. coli strains collected from cecal contents were identified by 2-dimensional difference gel electrophoresis. In both strains, acute inflammation led to the downregulation of pathways involved in carbohydrate breakdown and energy generation. Accordingly, DSS-treated mice had lower concentrations of bacterial fermentation products in their cecal contents than control mice. Differentially expressed proteins also included the Fe-S cluster repair protein NfuA, the tryptophanase TnaA, and the uncharacterized protein YggE. NfuA expression was 3-fold higher in E. coli strains from DSS-treated than from control mice. Reporter experiments confirmed the induction of nfuA in response to iron deprivation, mimicking Fe-S cluster destruction by inflammation. YggE expression, which has been reported to be involved in the extension of the remission phase in ulcerative colitis described for E. coli Nissle, was 4- to 8-fold higher in response to iron deprivation, mimicking Fe-S cluster destruction by inflammation. YggE expression, which has been reported to reduce the intracellular level of reactive oxygen species, was 4- to 8-fold higher in E. coli Nissle than in E. coli UNC. This was confirmed by in vitro reporter gene assays indicating that Nissle is better equipped to cope with oxidative stress than UNC. Nissle isolated from DSS-treated and control mice had TnaA levels 4- to 7-fold higher than those of UNC. Levels of indole resulting from the TnaA reaction were higher in control animals associated with E. coli Nissle. Because of its anti-inflammatory effect, indole is hypothesized to be involved in the extension of the remission phase in ulcerative colitis described for E. coli Nissle.

Inflammatory bowel disease (IBD) comprises two forms of intestinal inflammation: ulcerative colitis (UC) and Crohn’s disease (CD). The pathogenesis of IBD is not completely understood but is considered to result from an aberrant immune response to the intestinal microbiota in genetically predisposed subjects (39). In both IBD patients and animal models of gut inflammation, intestinal Escherichia coli was reported to become a dominant species of the gut microbiota (5, 10, 18, 24, 43, 44, 49).

For example, interleukin 10-deficient (IL-10−/−) mice, which develop inflammation in the cecum and colon, displayed reduced microbial diversity and elevated E. coli numbers. E. coli was represented by one predominant strain with an O7:H7:K1 serotype, which outcompeted other E. coli strains in diassociation experiments in gnotobiotic mice (49). In IL-2−/− mice, which also develop colitis, E. coli represents as much as 10% of the mucosa-associated microbiota (42). Some E. coli strains are capable of inducing intestinal inflammation in genetically susceptible mice. UNC, a murine strain of E. coli randomly isolated from wild-type mice raised under specific-pathogen-free conditions, induces mild cecal inflammation in IL-10−/− mice after 3 weeks of monoassociation (22). IL-2−/− mice monoassociated with E. coli mpk develop colitis accompanied by upregulation of gamma interferon, tumor necrosis factor alpha (TNF-α), cluster of differentiation 14 (CD14), and IL-10, while IL-2−/− mice monoassociated with either Bacteroides vulgatus mpk or the probiotic E. coli strain Nissle are not affected (47). In addition, E. coli Nissle is as effective as the standard medication for keeping chronic ulcerative colitis patients in remission (37). Nissle modulates several elements of the immune response (8, 9, 16, 34, 45, 50), but the bacterial components mediating these immunomodulatory effects have not yet been identified. There are some hints that the flagellin of E. coli Nissle contributes to its probiotic function (40).
pellet was resuspended in sterile phosphate-buffered saline (PBS; 37 mM NaCl, 2.7 mM KCl, 4.3 mM NaH₂PO₄, 1.47 mM KH₂PO₄ [pH 7.4]) and was administered by oral gavage. Gnotobiotic animal model. The germ-free status of the animals was confirmed before each experiment by microscopic inspection of Gram-stained feces. Furthermore, fresh fecal material was plated on Columbia sheep blood agar (bioMérieux, Germany) and was incubated under aerobic and anaerobic conditions at 37°C. 129/SvEv mice (8 to 9/group; 6 to 10 weeks of age) were kept in individually ventilated cages (IVC) for the duration of the experiment. Each mouse was orogastrically inoculated with 10⁷ E. coli Nissle or UNCl cells. The mice had free access to sterile food and autoclaved water. Mice of the control groups were housed under these conditions for 21 days. The animals treated with dextran sodium sulfate (DSS) received sterile drinking water for the first 7 days after association; then they received drinking water supplemented with 3.5% (wt/vol) DSS (MP Biomedicals) for another 7 days, followed by 2 days of sterile drinking water. Mice were subsequently killed by cervical dislocation. The colon length was determined, and tissue samples from the cecum and the colon were taken for histopathological analyses or, alternatively, for the isolation of intestinal contents by agitation with a Uniprep 24 gyrator (speed 2.1514 rpm, and 4°C for 5 min), and the supernatants were determined by plating on LB-Nennox agar (31).

Isolation of bacteria from cecal contents. The supernatants mentioned above were centrifuged at (10,000 × g for 5 min), and the pellets were resuspended in washing buffer (10 mM Tris [pH 8], 5 mM magnesium acetate, 30 mg/liter chloramphenicol, protease inhibitor mixture diluted 1:100). The resulting supernatants were collected and were stored at −20°C for the determination of concentrations of bacterial fermentation products and indole. The cells were subsequently isolated by Nycodez (Axis-Shield, Norway) gradient centrifugation as described by Vogel-Scheel et al. (46). Washed cells were stored at −80°C.

Histopathology scoring. Material for histopathology scoring was obtained from the ceca and colons (Swiss rolls) of only three randomly chosen animals, because the tissue was scarce. Intestinal tissue material was fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned at a thickness of 4 μm, and stained with hematoxylin and eosin (H&E). To quantify intraperithelial lymphocytes, the tissue sections were stained with an anti-CD3 antibody (Dako, Germany). The severity of inflammation was assessed on blinded samples according to the method of Schumann et al. (17) using a scale of zero (no inflammation) to 28 (severe inflammation). Each section was scored for the following categories: cellular infiltration, crypt hyperplasia, goblet cell depletion, edema, architectural distortion, and the area involved. The scoring was performed by Susanne Mauel (Freie Universität Berlin, Institut für Tierpathologie).

Determination of bacterial fermentation product concentrations. Concentrations of the bacterial fermentation products formate, lactate, and succinate in cecal supernatants were determined by enzymatic assays (Boehringer Mannheim/R-Biopharm, Germany) according to the manufacturer’s instructions.

Preparation of whole bacterial-cell protein extracts. Bacterial protein extracts were prepared according to the method of Vogel-Scheel et al. (46). Briefly, frozen cells were thawed, resuspended in 0.8 ml lysis buffer [8 M urea, 30 mM Tris, 4% [wt/vol] 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate [CHAPS] [pH 8.5]], and mechanically disrupted with zirconia-silica beads (di-ameter, 0.1 mm; Roth, Germany) in an FP120 FastPrep cell disruptor (Thermo Scientific, Waltham, MA). Unbroken cells were removed by centrifugation (at 14,000 × g and 4°C for 20 min). Components interfering with proteomic analysis were removed by selective precipitation of proteins (2-D cleanup kit; GE Healthcare). The concentration of resuspended proteins was determined by the Bradford assay (Bio-Rad, Spain). The pH of the protein solution was adjusted to 8.5 with 50 mM NaOH for optimal reactions with CyDyes in the following step.

Two-dimensional DIGE. The protein extracts from 5 randomly chosen samples per group were labeled according to the manufacturer’s instructions with CyDyes (GE Healthcare, Sweden) for difference gel electrophoresis (DIGE) and were applied to immobilized pH gradient strips (pH range, 4 to 7; length, 24 cm) in an Ettan IPGphor 3 isoelectric focusing unit (GE Healthcare, Sweden). Active rehydration (30 V for 10 h) was followed by isoelectric focusing of the samples for a total of 61.05 kV·h at 20°C. The second dimension was run on 12.5% sodium dodecyl sulfate (SDS) gels in an Etan-Dalt II apparatus at 1 W per gel for 45 min, followed by 17 W per gel for 3.5 h. The proteins were visualized with a Typhoon Trio laser scanner, and image analysis was performed with DeCyder software, version 6.5 (both from GE Healthcare, Sweden).

In-gel protein digestion. In-gel protein digestion was performed according to the method of Vogel-Scheel et al. (46). Briefly, preparative gels were stained with ruthenium II triis(bathophenanthroline disulfonate) (36) and were matched to the DIGE gels. Proteins of interest were excised automatically using an Etan Dalt spot picker (GE Healthcare, Sweden) and were subjected to tryptic digestion in 96-well plates. The tryptically digested peptides were dried by vacuum centrifugation.

Identification of proteins. Proteins were identified by nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (MS-MS) as described previously (46), except that ProteinLynx Global Server software, version 2.3 (Waters Corporation), and Swiss-Prot, version 57.2 (http://www.expasy.org/spport/), were used for processing of the MS-MS data and subsequent data bank searching. To eliminate false-positive results, a second search was performed using the randomized protein database.

Generation of luciferase reporter constructs. Luciferase reporter constructs were generated in pKEST06, which carries the luxAB genes from Photobacterium luminescens (see Fig. S2 in the supplemental material). The bgbL-bglG homology region was excised from the vector by digestion with the restriction enzymes EcoRI and XbaI (both from Fermentas, Germany). The nfuA and yggE promoter regions were amplified by PCR from E. coli MG1655, Nissle, and UNCl by using primers n1/n2 for nfuA or y1/y2 for yggE (Table 1). After digestion with restriction enzymes, PCR products were ligated into pKEST06 at the EcoRI and XbaI sites. The final constructs were transformed into the respective E. coli strain. All the constructs obtained were verified by sequencing (Eurofins MWG Operon, Germany) of the cloned DNA fragments.

Luciferase reporter gene assay. All three E. coli strains containing the respective pKEST06 constructs were grown aerobically for 1 h in LB medium containing 50 μg/ml carbenicillin. Subsequently, 8-ml aliquots of the culture were transferred to 6-well plates, incubated at 37°C, shaken at 215 rpm, and stimulated for 1 h with 250 μM 2,2′-dipyridyl (Sigma-
Aldrich, Germany) or 300 \(\mu M \) \(H_2O_2 \) (Roth, Germany). Bacteria were harvested by centrifugation at 10,000 \(\times \) g and 4°C for 3 min, and the pellet was resuspended in 200 \(\mu l \) PBS containing 30 mg/liter chloramphenicol. For luciferase reporter gene assays, 5 \(\times 10^5 \) cells were used. Measurements were carried out in triplicate following the addition of 100 \(\mu l \) 2% (vol/vol) decanal (Sigma-Aldrich, Germany) using a Luminoscan Ascent plate luminometer (Labsystems, Finland). Luminescence was measured immediately after the addition of the substrate, and the results are expressed as relative light units (RLU). To calculate the relative luminescence, the luminescence signal of the stimulated bacterial cells was normalized to the luminescence of the controls.

Generation of nfua deletion mutants. Chromosomal sequences comprising the nfua gene were replaced by a kanamycin resistance cassette according to the technique of Datsenko and Wanner (11) by using pKD13 as a template for the antibiotic resistance gene. The primers (d1/ d2) for the construction of the deletion mutants are listed in Table 1. Mutant candidates were tested for the loss of the target gene by PCR with kanamycin (k1/k2)- and locus-specific primers. In addition, the genotype of each mutant was confirmed by sequencing and characterization of the growth phenotype.

Characterization of nfua deletion mutants. Cells were preincubated aerobically overnight in LB medium and were inoculated freshly into LB medium alone or containing 300 \(\mu M \) paraquat (Sigma-Aldrich, Germany). The cultures were incubated aerobically at 37°C for 8 h, and growth was monitored by measuring the OD600. The effect of 250 \(\mu M \) 2,2’-dipyrinidyl was tested in the same way, except that 350 \(\mu M \) FeSO4 (Merck, Germany) was added after 1 h, and growth was monitored for 12 h.

Complementation of the nfua deletion. nfua was amplified by PCR from MG1655 with primers nfua1 and nfua2 (Table 1), which contain restriction sites for HindIII and BamHI, respectively. A 1,127-nucleotide (nt) HindIII-BamHI fragment was cloned into the low-copy-number plasmid pSU19 (4). The insert including both promoter regions of nfua was verified by sequencing. In addition, a 1,070-nt HindIII-KpnI fragment of the nfua region was recovered from the pSU19 construct, inserted into pBRINT-Cat2, and recombined into the chromosomal lacZ gene of the \(\Delta \)nfua strain as described by Le Borgne et al. (30). For complementation experiments, MG1655 carrying pSU19, MG1655 \(\Delta \)nfua carrying either pSU19 or pSU19-nfua, or MG1655 \(\Delta \)nfua lacZ::(nfua cat) was grown to the exponential-growth phase in LB medium (with chloramphenicol at 20 \(\mu g/ml \)) and collected by centrifugation, and resuspended in fresh medium. Cell suspensions of equal OD600 were serially diluted and 5 \(\mu l \) of each dilution was spotted onto LB plates containing 20 \(\mu g/ml \) chloramphenicol or onto plates containing, in addition, either 2,2’-dipyridyl (375 \(\mu M \)) or paraquat (300 \(\mu M \)).

Growth experiments for the determination of strain differences in tolerance to reactive oxygen species (ROS). Wild-type \(E. coli \) strains MG1655, Nissle, and UNC were preincubated aerobically overnight in LB medium and were inoculated into LB medium alone or containing 300 \(\mu M \) paraquat. The cultures were grown aerobically at 37°C for 8 h, and growth was monitored by measuring the OD600.

Determination of indole concentrations in cecal supernatants. The procedure for the determination of indole concentrations in cecal supernatants is based on the method of Mattivi et al. (32), with major modifications. Cecal supernatants were centrifuged (at 20,000 \(\times \) g and 4°C for 5 min). For high-performance liquid chromatography (HPLC) analysis, 20 \(\mu l \) of the liquid phase was used. Indole was separated on a LiChrospher 100 RP-18 column (length, 250 mm; inner diameter, 4 mm; particle size, 5 \(\mu m \); Merck, Germany). Solvent A was 1% acetic acid (vol/vol), and solvent B was methanol (MeOH). The following gradient was used for elution: 45 to 72% solvent B in 10 min, 72 to 76% solvent B in 10 min, 76 to 80% solvent B in 5 min, and 80 to 100% solvent B in 5 min at 20°C and a flow rate of 0.5 ml/min. Fluorescence was detected at an excitation wavelength of 225 nm and an emission wavelength of 365 nm (821-FP fluorescence detector; Jasco). The indole concentration was calculated by using a calibration curve produced with indole (Sigma-Aldrich, Germany) standards.

Statistical analysis. Results are expressed as medians. The significance of differences was analyzed by the Mann-Whitney U test (GraphPad Prism, version 5; GraphPad, La Jolla, CA).

RESULTS

Characterization of acute colitis. The disease severity of DSS-treated and control mice was determined by measuring body weight and colon length and by histopathological scoring of cecal and colonic tissues. The body weights and colon lengths of the DSS-treated mice were lower than those of the control mice, whether they were monoaassociated with \(E. coli \) Nissle or with \(E. coli \) UNC (Fig. 1A and B). There was no weight difference between mice associated with strain Nissle and mice associated with strain UNC in either the DSS group or the control group (Fig. 1A). However, the DSS-induced weight loss tended to be greater in animals associated with UNC than in those associated with Nissle (\(P = 0.06 \)) (see Fig. S3 in the supplemental material). Histopathological scoring of cecal and colonic tissues revealed that DSS caused inflammation preferentially in the colon and to a lesser extent in the cecum. There were no differences in the histopathological scores for the cecum or colon between the DSS-treated mice, whether they were monoaassociated with \(E. coli \) Nissle or with \(E. coli \) UNC (Fig. 1C and D). However, the ceca of the control animals associated with UNC were mildly inflamed, whereas the ceca of Nissle-associated animals did not show elevated inflammation scores (Fig. 1C). Different concentrations of strains Nissle and UNC cannot account for the higher histological score, since the cecal and colonic concentrations of Nissle and UNC in the control animals were equal. Only the intestinal UNC concentrations in the DSS-treated animals were approximately 0.25 log (cecum) and 0.5 log (colon) lower than those in the control mice (Fig. 2). Although these differences are statistically significant, it is debatable whether they are biologically relevant.

Animals that were not subjected to histological scoring were analyzed for mRNA levels of various proinflammatory cytokines, including TNF-\(\alpha \), in cecal and colonic tissues (see Fig. S4 in the supplemental material). The results indicate concordantly that the intestines of the DSS-treated animals were inflamed.

Adaptation of \(E. coli \) to intestinal inflammation. To identify bacterial proteins involved in the adaptation of \(E. coli \) to intestinal inflammation, the expression of \(E. coli \) proteins in the ceca of DSS-treated mice was compared to that in the ceca of control mice. In \(E. coli \) Nissle, 35 proteins were differentially expressed (\(\geq 3\)-fold; \(P \leq 0.05 \)), of which 24 were downregulated while 11 were upregulated (Fig. 3; see also Table S1 in the supplemental material). Besides stress-related proteins, proteins involved in pyrimidine conversion (Dcd), amino acid metabolism (GlnA), fatty acid metabolism (FabA), carbohydrate scavenging (Afp), and translation (RL15, RS6) were upregulated during intestinal inflammation. Proteins downregulated included enzymes involved in carbohydrate catabolism (Gapa, TpiA, PckA, TktA, PflB, MelA), translation (LysU, TufA, RL6, RL9), and purine/pyrimidine synthesis (PurC) and nucleotide salvage (DeoD, Upp). Furthermore, proteins involved in ATP synthesis (AtpA) and transport processes (HybC, MgLB, RbsB) were repressed.

In the colitogenic \(E. coli \) strain UNC, 35 proteins were downregulated while 16 were upregulated. Most of the latter are stress-related proteins. Other upregulated proteins play a role in amino acid metabolism and growth phenotype.
acid (TdcE, GlnA, AspA, TnaA) or carbohydrate (TktA, LacZ, SdhA, PflB) metabolism. As with *E. coli* Nissle, the repressed proteins are mainly involved in carbohydrate metabolism (Eno, Pgd, GapA, TpiA, FbaA, GalT, RbsK, RbsD) and to a lesser extent also in translational processes (LysU, ArgS, TufA, RS6, RL11) and purine/pyrimidine metabolism (CpdB, PurE, PurC, Upp) (Fig. 3; see also Table S1 in the supplemental material).

To check if the downregulation of enzymes related to central energy-generating pathways, as observed in both bacterial strains in response to DSS treatment, results in changes in carbon catabolism, the concentrations of bacterial fermentation products in intestinal contents were measured. In agreement with the proteomic data, the concentrations of formate, lactate, and succinate in the cecal water of DSS-treated animals were lower than in that of control mice (Fig. 4). In contrast, the cecal carbohydrate (glucose and galactose) levels were not affected by intestinal inflammation (see Fig. S5 in the supplemental material).

Role of NfuA in bacterial adaptation to intestinal inflammation. Among the *E. coli* proteins upregulated under inflammatory conditions were several stress-related proteins, such as GroL, RecA, and NfuA in strain Nissle, as well as Tpx, AhpF, NfuA, ClpB, and NusA in strain UNC (Fig. 3; see also Table S1 in the supplemental material). The Fe-S biogenesis protein NfuA was upregulated by a factor of 3 in both *E. coli* strains (see Table S1). Previous publications showed that NfuA plays a critical role in the adaptation of *E. coli* MG1655 to oxidative stress and iron starvation under *in vitro* conditions, since it binds iron-sulfur clusters and transfers them to the corresponding apoprotein (1). Therefore,
the role of NfuA in adaptation to inflammatory conditions was investigated in more detail.

Luciferase reporter gene constructs were generated in *E. coli* strains Nissle, UNC, and MG1655 (used as a control strain), and *nfuA* promoter activation by 2,2′-dipyridyl treatment was determined. 2,2′-Dipyridyl chelates iron (Fe²⁺) and thereby causes the destruction of Fe-S clusters. Treatment with 2,2′-dipyridyl resulted in the activation of the *nfuA* promoter in all three strains (Fig. 5), suggesting a role for NfuA in the repair of Fe-S clusters destroyed either by 2,2′-dipyridyl (*in vitro*) or by inflammatory conditions (*in vivo*).

Since all *E. coli* strains behaved similarly, *nfuA* knockout mutants were generated only for *E. coli* MG1655. The deletion of *nfuA* resulted in growth retardation when the strain was grown in the presence of the superoxide generator paraquat or the iron chelator 2,2′-dipyridyl. In contrast, the growth of the deletion mutant under control conditions (LB medium) was not affected (Fig. 6). In complementation experiments, the pSU19- *nfuA* plasmid was able to restore the growth of the *nfuA* deletion strain in the presence of either paraquat or 2,2′-dipyridyl, indicating that the growth defect was due to the deletion of *nfuA* (see Fig. S1 in the supplemental material).

Strain-specific expression of *E. coli* Nissle and UNC proteins.

The proteomic data were also analyzed for differences in protein expression between the two *E. coli* strains under both control and inflammatory conditions. In the control group, 26 proteins were upregulated and 39 proteins were downregulated in UNC versus Nissle, while under DSS treatment, 21 proteins were upregulated and 32 proteins were downregulated in UNC versus Nissle (see Table S2 in the supplemental material). The differentially expressed proteins are mostly related to the central metabolism (carbohydrate, fatty acid, and amino acid metabolism). Tryptophanase (TnaA) was 7-fold (control mice) and 4-fold (DSS mice) upregulated in *E. coli* Nissle versus *E. coli* UNC. TnaA catalyzes the cleavage of L-tryptophan to pyruvate and indole (48). Recently, indole was reported to exert anti-inflammatory effects (2, 3). Therefore, the cecal indole concentrations of control and DSS-treated mice monoassociated with either Nissle or UNC were determined. Control animals monoassociated with Nissle showed cecal indole concentrations 40% higher than those of mice associated with UNC. All DSS-treated mice had lower cecal indole concentrations than control mice, whether the mice were associated with strain Nissle or strain UNC (Fig. 7).

YggE was 8.1-fold upregulated in *E. coli* Nissle versus UNC under DSS treatment and was 4.4-fold upregulated under control conditions. YggE has been predicted to function as an auxiliary defense system against oxidative stress (23). We therefore hypothesized that YggE is a fitness factor for *E. coli* Nissle. To test this hypothesis, luciferase reporter gene assays were conducted with the three *E. coli* strains Nissle, UNC, and MG1655. Significant activation of the yggE promoter was observed only for Nissle after stimulation with 300 μM H₂O₂ (1.3-fold induction; *P* ≤ 0.01) or 250 μM 2,2′-dipyridyl (1.2-fold induction; *P* ≤ 0.01), not for UNC or MG1655 (Fig. 8). Growth experiments with wild-type E.
coli Nissle, UNC, and MG1655 demonstrated that paraquat affected the growth of Nissle to a lesser extent than that of the other strains, indicating that these *E. coli* strains differ in their tolerance of superoxide (Fig. 9).

DISCUSSION

High concentrations of intestinal *E. coli* play an important role in the onset and perpetuation of chronic intestinal inflammation (38). In the present study, a DSS-based gnotobiotic mouse model of acute intestinal inflammation was used to identify proteins that help *E. coli* to cope with this form of environmental stress. Two strains of *E. coli*, the probiotic strain Nissle and the colitogenic strain UNC, were used to evaluate strain-specific differences. Our experiments show that disease severity did not differ between animals associated with Nissle or UNC (Fig. 1A, B, C, and D). The inability of the probiotic *E. coli* strain Nissle to ameliorate acute inflammation is in agreement with its preferential use in keeping ulcerative colitis patients in remission (26, 27, 37). Even though administration of *E. coli* Nissle reduces proinflammatory cytokine secretion in conventionally raised mice with DSS-induced colitis, the histological markers are not affected (41). In contrast, Grabig et al. (14) observed an amelioration of DSS-induced colitis and a decrease in proinflammatory cytokine levels. Ukena et al. (45) reported a protective effect of *E. coli* Nissle against acute DSS-mediated leakiness of the gut.

Differences in histological scores were observed only for the ceca of control mice. While UNC induced mild inflammation in the ceca of these mice, Nissle did not (Fig. 1C). UNC was reported to induce cecal inflammation in IL-10−/− mice after 3 weeks of monoassociation (22). Our experiments suggest that UNC induces cecal inflammation not only in genetically susceptible IL-10−/− mice but also in healthy wild-type mice. Since the concentrations of *E. coli* Nissle and UNC cells in the ceca of control animals were equal (Fig. 2), differences in cell concentrations cannot account for the higher histological score of the ceca of control mice associated with UNC.

During severe intestinal inflammation, as induced by DSS, interstitial macrophages and phagocytic leukocytes (monocytes, eosinophils, polymorphonuclear neutrophils) produce reactive oxygen and nitrogen species (ROS and RNS), as well as lactoferrin (6,
epithelial cells and Paneth cells produce antimicrobial proteins and peptides such as peroxidases, lysozyme, and defensins to prevent the translocation of bacteria into the tissue (13). E. coli Nissle is endowed with a large number of fitness factors ensuring its survival under adverse conditions (15). Our experiments identified the uncharacterized protein YggE as a factor that enables E. coli Nissle to cope with the hostile environment in the inflamed intestine (Fig. 8; see also Table S2 in the supplemental material). YggE is a putative periplasmic protein (17), which is upregulated in E. coli cells exposed to UVA irradiation and thermal elevation (33). In E. coli cells expressing monoamine oxidase (MAO), overexpression of yggE alleviates MAO-derived oxidative stress (33). Moreover, spontaneously derived superoxide dismutase (SOD)-deficient E. coli cells induce yggE (23). Therefore, yggE is proposed to act as an auxiliary defense system against oxidative stress (23). In accordance with this notion, intracellular ROS levels were lower in SOD-deficient E. coli strains that overexpressed yggE than in E. coli strains that did not do so (25). All these observations confirm the ROS-scavenging function of YggE. Interestingly, we observed reductions in the levels of superoxide dismutase [Fe] (SodB) in E. coli from DSS-treated mice (see Table S1 in the supplemental material); this reduction was strain independent. In contrast, YggE expression was elevated only in strain Nissle and not in strain UNC (see Table S2 in the supplemental material). This supports our hypothesis that YggE enables Nissle to reach higher cell concentrations than the other E. coli strains in the inflamed gut and also in vitro in the presence of paraquat (Fig. 2, Fig. 9).

TnaA is another protein that becomes upregulated in E. coli Nissle versus UNC under both control and inflammatory conditions (see Table S2 in the supplemental material). The conversion of tryptophan by TnaA produces indole, ammonia, and pyruvate. Tryptophan supplementation in a porcine model of DSS-induced colitis improves histological markers and lowers intestinal permeability and levels of proinflammatory cytokines (21). Recently, indole was reported to reduce the chemotaxis, motility, and attachment of pathogenic E. coli to epithelial cells (3). Owing to its ability to modulate gene expression, indole is also involved in the reinforcement of the mucus layer and the stimulation of mucin production (2). In intestinal epithelial cells, indole attenuates the TNF-α-mediated activation of NF-κB and the expression of the proinflammatory chemokine IL-8, whereas it increases the expression of the anti-inflammatory cytokine IL-10 (2). Because of the enhanced expression of TnaA in E. coli Nissle isolated from the ceca of control and DSS-treated mice, we hypothesized that increased indole production by Nissle contributes to its beneficial effect. Control mice monoassociated with Nissle had cecal indole concentrations 40% higher than those of mice associated with UNC (Fig. 7). Since E. coli Nissle exerts its beneficial effect mainly in the remission phase of ulcerative colitis (26, 27, 37), it is conceivable that the observed elevated basal TnaA level, which, in turn, leads to increased indole production, contributes to the extension of this phase. All DSS-treated mice displayed lower cecal indole concentrations than control mice, whether they were associated with Nissle or with UNC. A possible reason for the finding that TnaA upregulation in UNC did not result in higher indole concentrations is the loss of indole due to increased permeability of the epithelial layer in the inflamed animals. We also cannot exclude the possibility that...
factors other than TnaA influence intestinal indole concentrations.

The proteomic analysis of *E. coli* also revealed a number of proteins that are repressed in the state of acute intestinal inflammation. In particular, enzymes of the central energy metabolism were repressed (Fig. 3). Glycolytic enzymes such as triose-phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase A were downregulated in both *E. coli* strains (see Table S1 in the supplemental material). In agreement with these findings, the concentrations of the bacterial fermentation products formate, lactate, and succinate in the ceca of DSS-treated mice were reduced with both *E. coli* strains (Fig. 4). Interestingly, lactate formation was observed only in *E. coli* Nissle-associated control mice, not in the corresponding DSS-treated mice (Fig. 4B).

In some instances, proteins belonging to the same metabolic categories (such as carbohydrate metabolism or nucleotide synthesis) were regulated oppositely. We do not have a definite explanation for these observations. However, inflammation may lead to the release from damaged epithelial cells of metabolites, which can in part be used by *E. coli*. This may, for example, require the upregulation of salvage enzymes and the downregulation of *de novo* synthesis of enzymes within the same category.

Intestinal inflammation also resulted in the upregulation of several bacterial stress response proteins in both *E. coli* strains (Fig. 3). Among these is the Fe-S biogenesis protein NfuA (see Table S1 in the supplemental material). As pointed out above, intestinal inflammation results in the destruction of Fe-S clusters (12, 19, 20, 28). Iron-sulfur proteins fulfill many important functions in metabolism, so that their inactivation has various adverse consequences for the bacterial cell. NfuA binds iron-sulfur clusters and transfers them to the corresponding apoprotein (1). We therefore propose that the upregulation of NfuA in response to intestinal inflammation reflects the cell’s effort to repair damaged Fe-S proteins (Fig. 10). This view is supported by the demonstration of the activation of *nfuA* promoters following the destruction of Fe-S proteins by the iron chelator 2,2'-dipyridyl (Fig. 5). Moreover, the growth of *nfuA* deletion mutants was inhibited under conditions of superoxide stress (paraquat) and iron starvation (2,2'-dipyridyl) (Fig. 6). NfuA (previously YhgI) is also upregulated in *Klebsiella pneumoniae* during infection of mice (29). As we do here, the authors of this study suggested that on entering the host, bacterial pathogens have to cope with iron deprivation and ROS produced by the immune cells and that the induction of genes such as *nfuA* might help the bacteria to deal with these stress factors (29). Our experimental results indicate that NfuA induction is a general mechanism to protect *E. coli* against the adverse effects of intestinal inflammation. This response might contribute to the elevated numbers of *E. coli* cells found in the intestines of IBD patients and in animal models of gut inflammation (5, 10, 18, 24, 43, 44, 49).

In conclusion, acute inflammation disturbs energy production in cecal *E. coli* strains and leads to the production of ROS and subsequently to the induction of NfuA, enabling *E. coli* to cope with the consequences of acute inflammation. Expression of the uncharacterized protein YggE by *E. coli* Nissle in the inflamed gut probably reduces intracellular ROS levels and thereby contributes to better survival of strain Nissle. Increased indole concentrations in the intestines of mice monoassociated with *E. coli* Nissle may indicate that indole contributes to the ability of Nissle to extend the remission phase in colitis patients. This work demonstrates the
multifaceted and partly strain specific response of *E. coli* to inflammatory conditions in the mouse intestine.

ACKNOWLEDGMENTS

We thank K. Schneck (University of Cologne, Cologne, Germany) for providing *E. coli* MG1655 and pKEST06, G. Gosset (UNAM, Mexico) for providing pBRINT-ΔCat2, I. Grüner and U. Lehmann for taking care of the animals, and B. Gruhl, S. Schaan, and P. Albrecht for skillful technical assistance.

The project was supported by grant BL 257/7-1 from the Deutsche Forschungsgemeinschaft.

REFERENCES

33. Ojima Y, Kawase D, Nishioka M, Taya M. 2009. Functionally undefined...

