








ambiguous base (Fig. 2). As expected, errors were associated with
low-quality scores and rarely had a quality score above 21. Finally,
when we performed a regression of the sequencer-generated
Phred quality scores (Q) against the observed error rate (P), we
observed the expected log-linear relationship (i.e., Q � �10 log10

P) with slopes of �11.7 and �14.3 for the first and second read,
respectively. The single-read data indicated that without signifi-
cantly trimming the length of the reads, it was not possible to
obtain the quality of data possible with 454 sequencing; however,
the error rates could be improved using the quality scores and
building consensus sequences from the paired reads.

Denoising via consensus. Building upon the observation that
the quality scores provided meaningful information, we devel-
oped a denoising strategy that utilized that quality score informa-
tion. Furthermore, by sequencing the three regions we were able
to explore the value of building consensus sequences with various
lengths of overlap. The entire V4 region was covered by two reads,
and the V45 and V34 regions had 125 and 70 overlapping nucle-
otides, respectively. To assess the error rates of these three regions,
we removed any consensus sequences that contained an ambigu-
ous base call or that were considerably shorter than predicted. In
the rare cases where the alignment of the two reads suggested a
putative insertion or deletion, we required the quality score to be
greater than 25; if it was less than this threshold, then the base was
erased. To resolve differences in base calls in the overlapping re-
gion, we defined a parameter, �Q, which represented the differ-
ence in the quality scores of the two reads at that position in the
sequence. Based on the empirical definition of the quality scores,
we expected the fold reduction in the error rate of the base in
question (�P) to be proportional to 10(�Q/10). We varied the min-
imum �Q between 0 and 10, and if the observed �Q value fell
below the specified minimum, the read was culled from the data

set. When this approach was applied to the V4 region (Fig. 3), we
observed a significant reduction in the error rate as we increased
�Q. The error rate did not change by more than 0.01% for values
of �Q greater than 6, for a theoretical 4-fold reduction in the error
rate. For the V4 data set, the basic error rate (i.e., �Q � 0) was
proportional to the cluster density (range, 0.25 to 1.08%); how-
ever, when the value of �Q was set at 6, the error rate dropped to
0.05 to 0.06% (Table 2). For the V34 and V45 data sets, the initial
error rate again varied with cluster density. Applying the same �Q
to data from the V34 and V45 data sets reduced the error rates to
0.29 and 0.58%, respectively, when the lowest cluster density was
used (Table 2). It was surprising that the shorter V45 region actu-
ally had a larger error rate than the V34 region. One hypothesis is
that this was due to the number of sites within the V34 (43 forward
and 51 reverse) and V45 (81 forward and 29 reverse) regions that
lacked heterogeneity between the two imaging channels. Taken
together, these data demonstrate that for the V4 data, the fraction
of sequences retained and length of sequences (i.e., ca. 250 nt) was
comparable to our previous results using the PyroNoise algorithm
on 454 flowgrams trimmed to 450 flows (i.e., ca. 260 nt) (10).

Preclustering sequences. We previously showed that a pre-
clustering step could further reduce the sequencing error and
number of unique sequences (10). Briefly, sequences are sorted in
decreasing abundance and then are sequentially compared to each
of the rarer sequences. If a rare sequence is less than a specified
number of bases different from the more abundant sequence, the
rare sequence is removed from the data set and its abundance is
added to the more abundant sequence. We found that allowing a
1-nt difference per 100 nt of sequence was the most appropriate
threshold. For the V4 data, the error rate decreased to 0.01% for
each of the four cluster densities, and it was reduced to between
0.10 and 0.21% for the V34 data set and to between 0.36 and

FIG 2 Profile of sequencing errors in the first and second read (A and C) and the quality scores associated with different types of errors in the first and second
read (B and D) using data from run 130403.
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0.64% for the V45 data set (Table 2). Again, the error rates for the
V4 data were at least as good as what we have observed using these
approaches with 454 data (10).

OTU assignment. Our analysis focused on optimizing a se-
quence curation pipeline to minimize error rates. Another popu-
lar metric of sequence quality is the number of spurious OTUs
that were generated compared to the number of OTUs that would
have been generated using perfect sequences (7, 8). Application of
this approach is generally flawed, because the number of spurious
OTUs is a product of the complexity of the mock community and
the number of sequence reads being analyzed. Regardless, we per-
formed two OTU-based analyses, expecting 20 OTUs from each

region in the absence of any sequencing errors or chimeras. In the
first analysis, we rarefied the data to 5,000 sequences per sample
and assumed perfect removal of all chimeras. Using the V4 data
set, we observed between 22.8 and 23.5 OTUs (i.e., 2.8 to 3.5
spurious OTUs). In the second analysis, we used UCHIME to
identify chimeric sequences and rarefied the data to 5,000 se-
quences per sample. We observed between 37.2 and 43.4 OTUs
(i.e., 17.2 to 23.4 spurious OTUs) (Table 2). When we replicated
this analysis for the V34 and V45 data sets, we observed signifi-
cantly more OTUs (Table 2). In general, the number of spurious
OTUs was correlated with the error rate of the data set.

We next applied our sequence curation procedures to DNA
isolated from soil and feces collected from a mouse and a human.
In general, the relationships we saw with the mock community
data held for these natural communities. Interestingly, the three
regions did not provide consistent relationships between the sam-
ples. Comparing the mouse and human samples suggested that
the mouse had more OTUs than the human within the V4 region,
the human had more OTUs than the mouse in the V45 region, and
they had similar numbers of OTUs in the V34 region. These dif-
ferences could be due to previously described variation in rates of
evolution between the regions or differences in error rates (23). In
spite of these differences, it was clear that the numbers of OTUs
per community generally were consistent. These data indicate that
the method is robust across numerous environments and that
caution is necessary before comparing data collected from differ-
ent regions.

Scaling up. The advantage of the dual-index approach is that a
large number of samples can be sequenced using a number of
primers equal to only twice the square root of the number of
samples. To fully evaluate this approach, we resequenced the V4
region of 360 samples that were previously described by sequenc-
ing the distal end of the V35 region on the 454 GS-FLX Titanium
platform (18). In that study, we observed a clear separation be-
tween murine fecal samples obtained from 8 C57BL/6 mice at 0 to
9 (early) and 141 to 150 (late) days after weaning, and there was
significantly less variation between the late samples than the early
samples. In addition to the mouse fecal samples, we allocated 2
pairs of indices to resequence our mock community. We gener-
ated 4.3 million pairs of sequence reads from the 16S rRNA gene
with an average coverage of 9,913 pairs of reads per sample (95%
of the samples had more than 2,454 pairs of sequences) using a
new collection of 8-nt indices (see the supplemental material).
Although individual samples were expected to have various am-
plification efficiencies, analysis of the number of reads per index
did not suggest a systematic positive or negative amplification bias
that could be attributed to the indices. The combined error rate
for the two mock communities was 0.07% before preclustering
and 0.01% after (n � 14,094 sequences). When we used UCHIME
to remove chimeras and rarefied to 5,000 sequences, there was an
average of 30.4 OTUs (i.e., 10.4 spurious OTUs). Similar to our
previous results, ordination of the mouse fecal samples again
showed the separation between the early and late periods and
increased stabilization with age (Fig. 4) (Mantel test coefficient,
0.81; P � 0.001). These results clearly indicate that our approach
can be scaled to multiplex large numbers of samples.

Titrating the number of 16S rRNA sequence reads. With 384
samples there is the potential to obtain an average of more than
20,000 sequences per sample. For some studies, this may be an
excessive amount of sequence coverage. If the investigator does

FIG 3 Relationship between the error rate and the fraction of sequences kept
as a function of the �Q value for the V34, V4, and V45 regions using data from
run 130403.
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not have access to additional samples, one option would be to
replace this coverage with metagenomic shotgun libraries. As a
proof of concept, we pooled Nextera-based shotgun libraries con-
structed from the genomic DNAs of the mock community, hu-
man feces, and two cultured isolates from mouse feces. We then
repeated the scaled-up analysis using a target of 5% PhiX, 50% V4
amplicons, and 45% metagenomes with a cluster density of
718,000 clusters/mm2. The increased fraction of sequencing allo-
cated to the V4 amplicons allowed us to have an average library

coverage of 13,980 pairs of reads per sample (95% of the samples
had more than 3,437 pairs of sequences). The mock community
amplicons again gave a final error rate of 0.01%, and the V4 anal-
ysis was unchanged. The assemblies of the four shotgun samples
demonstrated that excess 16S rRNA gene sequencing coverage
could be replaced by sequencing several bacterial genomes or one
or two metagenomes (Table 3). Although the HiSeq platform is
considerably more efficient for sequencing metagenomes, this ap-
plication demonstrates that genome and metagenome sequencing
on the MiSeq platform can be used to complement 16S rRNA gene
sequencing.

Conclusions. The results of our analysis allowed us to evaluate
Illumina’s MiSeq (v. 2.0) platform as an alternative to the 454
platform for sequencing the 16S rRNA gene. First, we showed that
MiSeq-generated 16S rRNA gene sequence data can be curated to
be at least as good as the data we are able to obtain using the 454
platform (10). Second, the 10-fold increase in read depth provided
by Illumina’s MiSeq platform over 454’s GS-FLX Titanium plat-

TABLE 2 Summary of the error rates and number of observed OTUs for the sequencing runs described in Table 1

Region and run

Error rate (%) for:
% reads remaining
from basic
(�Q � 0)

Average no. of OTUsa

Basic �Q � 6 Precluster Mockb Mockc Soil Mouse Human

V34
130401 2.14 0.37 0.21 10.3 26.9 49.6 1,110.6 175.1 187.5
130403 1.30 0.26 0.12 27.6 31.1 47.8 1,095.8 158.2 164.1
130417 1.12 0.24 0.10 27.9 35.1 52.2 1,038.6 ND 142.6
130422 0.91 0.29 0.17 47.5 41.4 54.3 1,053.0 162.5 145.1

V4
130401 1.08 0.06 0.01 44.2 23.5 43.4 1,248.2 136.1 115.4
130403 0.67 0.05 0.01 60.1 23.5 40.9 1,261.8 133.9 117.8
130417 0.40 0.05 0.01 69.3 22.8 37.5 1,257.3 135.5 117.2
130422 0.28 0.05 0.01 78.4 23.2 37.2 1,256.2 132.8 117.3

V45
130401 4.60 0.87 0.64 13.5 191.9 271.7 1,462.8 198.0 312.9
130403 3.31 0.79 0.56 32.3 180.4 246.1 1,519.7 213.3 324.0
130417 2.38 0.66 0.43 36.5 110.8 158.3 ND 180.4 242.1
130422 1.67 0.58 0.36 56.4 98.0 131.6 1,403.3 186.3 227.2

a The average number of OTUs is based on rarefaction of each sample to 5,000 sequences per sample; cells labeled ND reflect samples that did not have at least one replicate with
more than 5,000 sequences.
b Number of OTUs in the mock community when all chimeras were removed; in the absence of chimeras and sequencing errors, there should be 20 OTUs for all three regions.
c Number of OTUs in the mock community when chimeras were removed using UCHIME.

FIG 4 Principal coordinate ordination of �YC values (28) relating the com-
munity structures of the fecal microbiota from 12 mice collected on days 0
through 9 (Early) and days 141 through 150 (Late) after weaning.

TABLE 3 Summary of assemblies using shotgun sequence data
generated in parallel to 16S rRNA gene sequences

Library

No. of
reads
(�106)

No. of
bases
(�106 bp)

No. of
contigs
(�500 bp
each)

N50a

(�103 bp)

Reads that
mapped
to contigs
(%)

Clostridium
clostridioforme
D4

1.44 360 317 37.88 97

C. clostridioforme
CIP110249

1.54 380 323 43.80 96

Mock community 2.40 600 31,946 1.46 66
Human feces 5.79 1,450 27,321 1.00 49
a The contig length where all contigs of that length or longer contain more than 50% of
the bases found across all contigs.
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form would allow one to either obtain 10-fold more sequences per
sample or to sequence 10-fold more samples. That the MiSeq re-
agents and instrumentation are considerably cheaper than the
454’s would allow even more depth per dollar. Finally, our expe-
riences with 454 and Illumina have shown that both have difficul-
ties maintaining reagent quality; however, the simplicity of MiSeq
library construction compared to the emulsion PCRs required by
454 make MiSeq a clear favorite. Thus, the MiSeq platform satis-
fies the desire for economically generating a large number of high-
quality sequence reads that can easily be distributed across a large
number of samples.

Determining the amount of DNA to load onto the flow cell to
achieve a desired cluster density, as well as the PhiX concentration,
is an empirical process that appears to be dependent on the se-
quencer software and fragment length. This underscores the im-
portance of resequencing mock communities to identify the
proper parameters that will minimize the error rate and maximize
the number of reads generated. We observed that the fraction of
sequences remaining after applying the �Q value was inversely
proportional to the cluster density, and that the error rate ob-
served after preclustering was independent of the cluster density
for the V4 data. To assess the trade-off between number of usable
reads and cluster density, we multiplied the number of 16S rRNA
gene sequences (Table 1) by the percentage of reads that passed the
threshold (Table 2). This demonstrated that the actual number of
sequences obtained when the cluster density was between 690 and
1,094 K clusters/mm2 yielded 7.0 to 7.5 million contigs. If this
sequencing depth were achieved when sequencing 384 samples,
one would expect an average of 18,000 to 20,000 reads per sample.
Subsequent experience sequencing samples from other projects
suggests that the low complexity of the mock community artifi-
cially reduces the number of reads that pass the criteria laid out in
the present analysis. Thus, this yield represents a low end to what
would be expected for sequencing runs with only samples from
natural communities.

Previous demonstrations of the Illumina-based platforms have
focused primarily on quantifying the beta-diversity between com-
munities using database-dependent methods (13–15). Although
beta-diversity is an important metric for comparing communities,
its use is limited to comparisons where there are clear differences
between communities, and it does little to inform one of the de-
tails of the differences between the communities. Considering the
deep coverage of individual samples, database-dependent meth-
ods are limited, because they will not have sufficient representa-
tion of many rare and novel populations that the extended cover-
age will likely detect. The OTU-based approach described here has
been facilitated by reducing the sequencing error rate from 1.08 to
0.01%, resulting in a reduction in the number of unique sequences
that need to be processed. As sequence lengths continue to in-
crease, it will become possible to reliably sequence longer regions
of the 16S rRNA gene fragment; however, based on this analysis, it
is critical that the fragments fully overlap. Although clearly an
idealized community, the sequencing and analysis of mock com-
munity DNA in parallel with the biological samples of interest has
allowed us to optimize our curation steps and choice of variable
region within the 16S rRNA gene by minimizing the overall error
rates. We encourage others to include mock community samples
as a standard control in all sequencing analyses.
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