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FIG 2 Percentage of samples positive for microbial source tracking markers by specific site, season, and flow conditions. TCD were used for the RCA,

RCA,\URCA,,, and URCA,

out out

in>

sites for source markers and source viruses, and the Cryptosporidium-associated source tracking markers at the RCA;, and
URCA,,,, sites are summarized in a temporally concurrent manner. See Fig. 3 for parasite source occurrence at the RCA,

\URCA,,, site. High flow, =0.018 m’

out

s~ 15 low flow, =0.002 m® s~ ' and <0.018 m® s~ '; and no flow, <0.002 m> s~ . a/w, associated with.

The rate of detection of the human Bacteroidales marker was
significantly higher at the RCA,,\URCA;,, site (19%) than at the
RCA,, site (4%) for all data (Fig. 2). Similar, statistically significant
trends in the human marker were observed in summer and at high
flows as well. Support for the trends observed in Fig. 2 to 3 is given
in Table S2A and B in the supplemental material. The site trends
are believed to correspond to the downstream impact from homes
located immediately adjacent to the pasture treatments.

To assess the impact of the BMP on marker trends, taking into
account small differences in stream flow at each sample site that
could impact dilution and mass transport downstream along the
pasture system, the numbers of Bacteroidales copies day~' were
compared. Differences in the distribution of the numbers of Bac-
teroidales copies day ™' in stream water for the ruminant Bacteroi-
dales marker were observed between the RCA_,\URCA;, and
URCA,,,, sites for TCD (Table 1), where lower average rank sums
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were observed for the RCA_ , \URCA;, site. At low flow, average
rank sums of the ruminant Bacteroidales marker were lower for the
RCA_,\URCA,,, site than for the URCA_, site (TCD). Addition-
ally, ruminant Bacteroidales marker means (number of copies
day™") were consistently higher for the URCA,,,, site than for the
RCA,,\URCA,, site (Table 2); similar trends were observed for
AAD (Tables 3 and 4). Significant differences in the distribution of
wildlife-related Bacteroidales markers (number of copies day™ '),
namely, the muskrat marker, were observed between the
RCA,,\URCA,, and the URCA,,, sites (Tables 1 and 3). Average
rank sum values for the muskrat Bacteroidales marker for TCD
were higher for the RCA_ ,\URCA;, site than for the URCA_,, site
overall, and for spring data, average rank sums showed similar
trends. Average rank sums of the muskrat Bacteroidales marker for
TCD were greater for the RCA,,\URCA,, site than for the RCA;,

site in spring. Muskrat Bacteroidales marker means (number of
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FIG 3 Percentage of samples positive for microbial source tracking markers by specific site, season, and flow conditions. Data represented here were based on

AAD. See Fig. 2 for flow regime limits. a/w, associated with.

copies day ') were higher for the RCA,,\URCA,,, site than for the
URCA,_site (Table 4) for AAD. Average rank sums of the Canada
goose Bacteroidales marker increased from the RCA,, site to the
RCA,,\URCA,, site for TCD (all data), complementing
the muskrat marker wildlife trends. All average rank sums for the
number of copies day”' for human markers that were signifi-
cantly different (Table 1) in the TCD were higher in the down-
stream direction (rank sums were higher for the RCA_ ,\URCA;,
and URCA_, sites than the RCA,,, site). The results for the num-
ber of copies day~ ' presented above mimicked very closely the
trends in Bacteroidales marker number of copies 100 ml~' data in
Tables S2A and S3B in the supplemental material, due to the rel-
atively short distance between sampling sites and the limited hy-
drologic contributing area.

The most commonly occurring serovars of Salmonella were
Salmonella serovar 1:4,5,12:b:— (n = 22), followed by Salmonella
serovars Kentucky (n = 8), Mbandaka (n = 3), and Bovismorbifi-
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cans (n = 3) (see Table S1C in the supplemental material). Salmo-
nella serovar 1:4,5,12:b:— was found most often at the
RCA,,\URCA;, (1 =9),URCA,,;q (n =5),and URCA,, (n = 8)
sites.

Of note, for AAD (Fig. 3), all animal TTV detections were
significantly different among some sites and at low flows, where
detections were significantly higher at the RCA,,\URCA;, (15%)
and URCA ;4 (17%) sites than at the RCA;, (0%) site (Fig. 3). At
low flows, animal TTV virus detections were higher at the
RCA,,\URCA,, site (23%) than at the RCA;, (0%), URCA, ;4
(11%), and URCA,, (0%) sites.

Cattle exclusion BMP, season, and flow interactions among
Bacteroidales source markers and pathogens. The CART analy-
ses revealed that higher flow in fall was a condition that most
strongly delineated occurrences of Cryptosporidium isolates of
livestock origin from those of wildlife origin (see Table S4 in the
supplemental material). However, the greatest number of occur-
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rences of Cryptosporidium associated with the muskrat genotype
(consisting of muskrat genotypes I and II) and of Cryptosporidium
linked to unknown sources were delineated respectively in summer
and fall and in fall only (see Table S$4 in the supplemental material).

In contrast to the Cryptosporidium data, the effects of site (cat-
tle exclusion BMP) and flow regime were more notable for the
ruminant and muskrat Bacteroidales source markers. For Canada
goose and pig markers, sample site and, hence, cattle exclusion
practices were found to be the most important for delineating
marker occurrences when CART was used, whereas for the human
markers, seasonal and sample site interactions were critical for
delineating marker occurrences when CART was used (see Table
S4 in the supplemental material). Using CART, it was determined
that norovirus GI (human-associated) and GIII (bovine-associ-
ated) occurrences were most strongly delineated on the basis of
seasonal and flow variable interactions. Cattle exclusion effects
were important independent criteria for defining human and an-
imal torque tenovirus observations. For delineating F-RNA co-
liphages associated with animals, seasonal attributes were found
via CART to be of utmost importance.

Co-occurrence of host-specific markers and viruses. All sites
were examined qualitatively through time (10-day windows
throughout the course of the study) for the detection of host-
specific Bacteroidales markers, generalized host classes of Crypto-
sporidium, and host-specific viruses using the heat map approach
(see Fig. S1 in the supplemental material). For the human markers
and pathogens, there were no co-occurrences between human
Cryptosporidium and human Bacteroidales marker. There were a
total of 53 human virus observations. This generated 23 human
virus events within the heat map and 9 co-occurrences of the hu-
man Bacteroidales marker (39%) for these 23 events (see Fig. S1 in
the supplemental material).

For the ruminants (livestock), there were 4 out of 20 (20%)
occurrences of livestock-associated Cryptosporidium (C. ander-
soni, C. parvum, or C. ubiquitum) when the ruminant Bacteroi-
dales marker was detected (OR, 1.7; 95% confidence interval [CI],
0.3 to 7.6), 2 out of 9 (22%) occurrences of the ruminant Bacte-
roidales marker when norovirus GIII associated with bovine was
present (OR, 0.9; 95% CI, 0.1 to 5), and 9 out of 41 (~23%)
occurrences of the ruminant Bacteroidales marker when F-RNA
coliphage (animal) was present (OR, 0.8; 95% CI, 0.3 to 2.1) in
samples collected at the same site and time (see Fig. S1 and Table
S5A and B in the supplemental material), but here, there were no
significant results (see Tables S5B and C in the supplemental ma-
terial). For pig, there were a total of 10 occurrences of animal
torque teno virus associated with swine but no co-occurrences of
the pig Bacteroidales marker in these samples.

There were 2 observations of avian-associated Cryptospo-
ridium and no co-occurrence with the Canada goose Bacteroidales
marker (see Table S5A in the supplemental material). Of some 42
F-RNA coliphage animal detections, there were only 3 concurrent
Canada goose Bacteroidales marker observations (7%). For musk-
rat/vole-associated Cryptosporidium (muskrat genotypes I and II),
there were 17 observations and no co-occurrence with the musk-
rat Bacteroidales marker. Of some 41 F-RNA coliphage animal
observations, there were only 4 co-occurrences of the muskrat
marker (10%).

The cross tabulations and contingency table analyses (see Ta-
bles 5A to 5C in the supplemental material), performed to assess
the overall co-occurrence of host-specific markers quantitatively
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TABLE 1 Median and mean absolute deviation of source Bacteroidales for TCD by season and flow condition

Bacteroidales
MST marker
endpoint
Ruminant
Ruminant
Ruminant
Muskrat
Muskrat
Muskrat

C. goose

C. goose

C. goose
Human
Human
Human

Pig
Pig
Pig
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MST Marker/Pathogen Coherence in an Intermittent Stream

with Fisher’s exact tests and odds ratio analyses using AAD, indi-
cated the following significant findings: (i) positive associations
among Cryptosporidium (unknown) and livestock, muskrat geno-
types, and wildlife generalized Cryptosporidium host classes, (ii)
negative associations among Canada goose Bacteroidales marker
and the ruminant Bacteroidales markers, (iii) norovirus GIV asso-
ciated with humans and astrovirus associated with humans exhib-
ited a positive relationship, (iv) norovirus GIV associated with
humans and norovirus GIII associated with bovines showed a pos-
itive relationship, and (v) F-RNA coliphages associated with ani-
mals and norovirus GIII associated with bovines also exhibited a
positive relationship.

Associations among pathogens, Bacteroidales, and other
source tracking markers. There were two notable significant as-
sociations between the markers and pathogens, and these were
between the ruminant Bacteroidales marker and Cryptosporidium
(see Fig. S2 in the supplemental material), where there were sig-
nificantly higher rates of detection of the ruminant marker in the
presence of Cryptosporidium, with an associated OR estimate of
~4.7 and a Cl above unity, and between the Canada goose marker
and norovirus GII (OR estimate of 0.00 and a CI below unity
indicating negative associations) (Table 5).

DISCUSSION

Comparison of ruminant Bacteroidales marker occurrence, the
Bacteroidales number of copies day ™' (load), and the number of
marker copies 100 ml~' in stream water within the fenced and
unfenced cattle pastures indicates that the reach of the stream
protected from pasturing cattle did not increase ruminant Bacte-
roidales marker occurrences and loading from upstream monitor-
ing sites, but as expected, where cattle were allowed to interact
with the stream, ruminant marker occurrence and the number of
copies day~ ' increased significantly. This was as a consequence of
increased direct fecal release in and around the stream and a lack
of filtering vegetation in the riparian zone to buffer contaminated
drainage from adjacent land where cattle pastured. While there
were no significant associations of the ruminant Bacteroidales
marker with the suite of pathogens examined here (Campylobacter
spp., Salmonella spp., Escherichia coli O157:H7, Cryptosporidium,
Giardia, hepatitis E virus, norovirus GII, rotavirus), except for
Cryptosporidium spp. (of which 10% of these samples had the
human-pathogenic C. parvum), the marker data point to the po-
tential for an increased risk of cattle fecal contamination for
stream/riparian systems that are not protected from pasturing cat-
tle, even for those with modest pasturing densities. Wilkes et al.
(11, 59) found that the occurrence of E. coli O157:H7 was signifi-
cantly higher in the unrestricted cattle access area than in other
surface water quality monitoring sites in the region, including the
RCA sampling sites. Wilkes et al. (59) also found that Salmonella
spp. occurred more often in the URCA region; here, we observed
a variety of Salmonella serovars in the pasturing corridor, includ-
ing Salmonella serovar 1:4,5,12:b:—, which predominated in the
livestock-impacted site (61% of the overall serovars observed).
Hence, in the assessment of BMP interventions that are subjected
to multiple sources of fecal contamination, Bacteroidales source
data appear to be useful for gauging BMP effectiveness and/or the
impact of land use change on the sources of fecal inputs. Whether
or not Bacteroidales source markers have more utility in this ca-
pacity than, for example, fecal indicator bacteria (26) will be the
product of future research.
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2 RS-S3Iqmxin=a k) Sa2 S| wE . . . . . .

Sl E|dr-dasm-crdoosoosa-“os|8 & that protecting habitat could indeed significantly increase inputs
= = e 8 e .
ES z e i of wildlife fecal material, yet where cattle have open access to a
N 3] - 3 .
£z = £2% e § g stream (where they eat plants, trample soil and plants, etc.), the
S22 osg SSSS <Y wildlife Bacteroidales markers were significantly reduced in rela-
w —~ =g . . . . .
] A AL L SR 114 5 g tion to their numbers in protected upstream sites. While there

co—o oo -~ —mmocoga o «|S 3§ . . . . . . .

F¥3F §: T riziz T flvs were increases in thes.e Wlldllfe markers in the protected riparian
j:% g gERg Bg £ $79EF ¥ % % = zone, there were no significant increases in pathogen occurrence

U Aainh i (59). In fact, Wilkes et al. found that occurrences of Campylobacter

£ £= spp. significantly decreased from the RCA;; site to the URCA
(2] g-) =] n out
ES = g site (59). The wildlife (muskrat, Canada goose)-associated Bacte-
§§§§ § s roidales markers served as excellent indicators of the impact of
—~— —~— = [ L. . .
§££§ g2 £z E land use change on wildlife activity, such as how pasturing live-
==} ) B = . . . .
AR -1 R 1 S E £ stock in and around the stream and riparian zone can disrupt
23 2822 = = = o =|E7 idli i i i adli i
5 82 383= 2 7 % ¥ TSR yvﬂdhfe habitat and, in so doing, reduce the wildlife .fecz.ﬂ signature
-2 —| 228 2zgr =2 8 =2 g 2|Ed in such systems. Green et al. (49) observed that wildlife markers
=] < ] o= - T H N 2| ©
k= 12 |¥acdd-decdecros—o-od g2 i.e., markers targeting avians) were distributed in the surface wa-
o [~ s g
g E é ;% ters of a geographically wide range of watersheds, and so, too, have
) z 22 22 S < Fremaux et al. (50), who observed a large proportion of wildlife
= o 8% 2R 5 S . L
= STy s2eo|f 2 (i.e., Canada goose) detections in surface water.
@ . . . . .
i § S22 RS ;S =B The signature of human Bacteroidales markers significantly in-
o = 2 . . . . .
2 g %EQEOEQ ccoccococcooo OEQEQEQ% g g creased downstream of the RCA, site at monitoring sites imme-
g - = -~ R : .
2 5 g2oog2 232 o S diately downstream of homes where some small septic leaks were
-~ . .
'QD g SI5E8EEE 288 H# 2 8122 documented. These trends were significantly more pronounced at
3 G EEE R Tefdnmesmeeeexen g 8 high flows and in summer as a result of intense rain events pro-
5 Z § £y moting drainage to the adjacent stream. Although the trends were
= A e <D o . .. .
9 £ =£2=2% £ not statistically significant, there were noteworthy spatial trends
X N QAN & O y y
< - 555 55;55 5E that were similar to those for human Bacteroidales markers among
) SloccostleiLiiibcocccooos|E 1 iated with h 1 Gl iated with
5 ccceeseee cceoecees|z s astrovirus associated with humans, norovirus Gl associated wit
= = = . 7. . .
S o TTTT ST ST 7T T Tlzs humans, human TTV, and Cryptosporidium associated with hu-
SIF £ 2]5582 28 2% 4855 58 g|i: mans. These trends were all promising in terms of identifying how
§ o & 2653 dcdicidotnddondton = ' p & ) N &
2| s g5 human sources of fecal pollution behave in a system designed to
8 = e . P .
Z| & z T3 promote reductions in livestock fecal pollution (open systems).
o = = = . . .
== S g McQuaig et al. have consistently observed the concurrence of hu-
o v
.% K s ; §§ s §§§§ :2;2 é; man markers (human polyomaviruses and Bacteroides human
B i§ 22 282 33288 S2RE(2 :i« markers) in septic waste (51), and Peed et al. (52) have observed
o |3 o = . . .
2| s g %ii%%ii%%%ii oo Oicicicic U:‘E z human markers and septic system contamination of a low-order
g . . o .
= °ez-=822823= 222333% =3 E stream during rainfall events, trends similar to those observed in
2] ¢ o e R R .
SlE|Z|2|EEEREREEEE SRECEEE B|g £ this work.
g[S1213|S222338802cadEiinton |3 » Overall, there was promising consistency in the downstream
s ~ —~ —~ ~ ~ S 9 >
(] (5 .
g 8 8 a8 a8 8 ¢ g occurrence of the human Bacteroidales markers and human
S EIN EIN IR £ 8 3 = . . . .
g 5 § ga § ga § ga § ge § az|% % viruses among the water sampling sites, even over the relatively
g HEES 1320 20 —Egg% 238 2 Ik 1:’ small reach of this intermittent stream. All markers behaved in
ks < 5'5°§ § 5-5°§ § 5—5; § 5-5°§ é 555-2@ &2 accordance with expected hypothetical spatial trends, and
= F|RED5D&Z&Z55EZEZSDEED0EE00 (T 2 therefore, Bacteroidales are an enormously powerful tool with
o £2 g7 hich land d land use ch ff fecal
m I - D g% which to gauge land use and land use change effects on feca
= SEE|E£££EEEEggeze ESE8|E 5 ollution (19-21, 52, 53). This can have significant potential
2| sgi|fgEEfiiiesac, . EEElBE P 75 8 P
= 255|222 E555500UURAARTETIIEIC & when assessing how a BMP behaves or does not behave in open
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MST Marker/Pathogen Coherence in an Intermittent Stream

watershed systems where multiple sources of fecal inputs occur
(22, 54, 55).

While the overall spatial trends described above made sense
from a biophysical standpoint, there was no significant systematic
sample-by-sample- or temporal window-based coherence among
similar source tracking endpoints, nor were there any strong as-
sociated links with pathogens. Fremaux et al. (1) and Marti et al.
(21) did not find strong associations between Bacteroidales
markers and selected waterborne pathogens either. The reason
for a generalized lack of coherence among similar marker end-
points (and markers and pathogens) is no doubt multifactorial;
however, some factors could be related to (i) the fact that not all
water samples that had Bacteroidales source markers (differ-
ences in the densities of various markers and pathogens) con-
tained pathogens (of those monitored), (ii) variable dissipation
among the Bacteroidales source markers and the pathogens and
host-specific pathogens (1, 21, 53, 54), (iii) the size of the or-
ganism or microbial source tracking endpoint, resulting in dif-
ferential transport behavior (56, 57), (iv) detection limits and
analytical constraints, such as those discussed by Marti et al.
(21), including extraction of DNA/RNA (or nucleic acids)
from larger water volumes and the impact of PCR inhibitors
(58), and (v) variability in the degree of host specificity among
the source tracking endpoints.

Several noteworthy deductions can be drawn from this study:
(i) changes in the prevalence of Bacteroidales markers can occur
over short distances as a result of land use changes (such as inter-
ventions consisting of cattle exclusion BMPs that protect the
stream and riparian zone). The ruminant Bacteroidales and the
bovine-associated virus markers did not increase significantly in
the stream protected from pasturing cattle, suggesting a positive
BMP impact, yet ruminant Bacteroidales markers did increase sig-
nificantly from the output of the restricted area to areas where
cattle access to the stream was unrestricted.

(ii) Pig Bacteroidales markers were observed most markedly in
close proximity to drainage inputs from fields associated with land
applications of swine manure.

(iii) Select wildlife (e.g., muskrat and Canada goose) Bacteroi-
dales marker detections were observed more frequently down-
stream of the protected stream/riparian zone. Wildlife markers
were significantly reduced where cattle had access to the stream as
a result of ruminant activity (23). There were no significant posi-
tive associations between pathogens and detection of these wildlife
Bacteroidales markers, and Wilkes et al. (59) did not observe a
significant increase in pathogen detection in the stream associated
with the cattle exclusion practice.

(iv) Human Bacteroidales markers, found to be significantly
higher downstream of homes located along the experimental pas-
tures, likely occurred as a result of septic system leakages. There
were no significant associations with this marker and other patho-
gens.

(v) There was considerable interplay in MST marker results
with stream flow, season, and localized upstream land uses (in-
cluding cattle exclusion BMP). Interactions were highly variable,
depending on the marker.

(vi) Cryptosporidium exhibited consistent seasonal loading
over all sites for livestock and wildlife at high flow (with the overall
greatest occurrences in the fall perhaps resulting from fall flow
events flushing oocysts that had accumulated in the system over
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Wilkes et al.

TABLE 5 Odds ratios (OR) and upper and lower confidence intervals (CI) for MST endpoints versus selected pathogens in water using AAD?

Value for indicated pathogen(s)

E. coli
MST endpoint Estimate Campylobacter spp.  Salmonellaspp.  O157:H7  Cryptosporidium  Giardia ~ HepatitisE ~ Norovirus GII  Rotavirus
Cryptosporidium a/w ~ Lower 95% CIOR  0.25 0.29 0.00 6.76 0.24 0.00 0.00 0.00
livestock estimate
OR estimate 1.27 3.62 0.00 ®© 1.13 0.00 0.00 0.00
Upper 95% CIOR  5.35 29.35 oo ®© 4.25 o 11.81 ]
estimate
Cryptosporidium a/w ~ Lower 95% CIOR  0.82 0.28 0.00 17.73 0.11 0.00 0.00 0.00
wildlife estimate
OR estimate 2.35 2.21 0.00 ® 0.42 0.00 0.00 0.00
Upper 95% CIOR  6.77 17.62 o ®© 1.34 o 77.91 o
estimate
Cryptosporidium alw ~ Lower 95% CIOR  0.06 0.00 0.00 0.32 0.03 0.00 0.00 0.00
avians estimate
OR estimate o 0.00 0.00 o 1.83 0.00 0.00 0.00
Upper 95% CIOR 541.39 oo o 36.67 % % ]
estimate
Cryptosporidium a/w Lower 95% CI OR 0.00 0.00 0.00 0.19 0.09 0.00 0.00 0.00
humans estimate
OR estimate 0.00 0.00 0.00 o 7.18 0.00 0.00 0.00
Upper 95% CIOR ~ 13.21 79.75 % » 588.77 o w %
estimate
Cryptosporidium a/lw ~ Lower 95% CIOR  0.65 0.42 0.00 9.75 0.18 0.00 0.00 0.00
muskrats/voles estimate
OR estimate 2.06 3.36 0.00 ®© 0.69 0.00 0.00 0.00
Upper 95% CIOR  6.35 27.26 el ®© 2.21 % oo e
estimate
Cryptosporidium a/w ~ Lower 95% CIOR  0.25 0.29 0.00 2.46 0.07 0.00 0.00 0.00
unknown sources estimate
OR estimate 1.27 3.62 0.00 ®© 0.70 0.00 0.00 0.00
Upper 95% CIOR  5.35 29.35 o0 ®© 3.66 o 77.91 ]
estimate
Bacteroidales Lower 95% CIOR  0.28 0.01 0.33 1.33 0.41 0.08 0.67 0.03
ruminant marker estimate
OR estimate 0.59 0.39 6.50 4.74 1.79 o 2.68 1.54
Upper 95% CI OR 1.19 3.00 389.00 21.66 6.89 o 10.17 30.79
estimate
Bacteroidales Lower 95% CIOR  0.12 0.00 0.00 0.01 0.04 0.00 0.02 0.00
muskrat marker estimate
OR estimate 0.55 0.00 0.00 0.42 2.36 0.00 0.88 0.00
Upper 95% CI OR 1.97 7.85 36.75 8.46 48.35 450.19 7.85 19.46
estimate
Bacteroidales Canada ~ Lower 95% CIOR ~ 0.32 0.00 0.00 0.09 0.04 0.00 0.00 0.00
goose marker estimate
OR estimate 1.43 0.00 0.00 1.76 2.36 0.00 0.00 0.00
Upper 95% CI OR 6.43 © 53.70 106.91 48.35 1249.15 0.83 71.37
estimate
Bacteroidales pig Lower 95% CIOR  0.10 0.00 0.00 0.21 0.34 0.00 0.00 0.00
marker estimate
OR estimate 1.42 0.00 0.00 2.68 5.01 0.00 0.00 0.00
Upper 95% CI OR 19.90 38.60 157.86 146.06 74.80 3676.05 241.45 931.99
estimate
Bacteroidales human Lower 95% CIOR  0.19 0.00 0.00 0.09 0.10 0.00 0.00 0.04
marker estimate
OR estimate 0.59 0.00 0.00 0.45 1.03 0.00 0.00 2.13
Upper 95% CI OR 1.59 4.38 20.93 1.95 5.87 241.45 1.81 29.00
estimate
Hepatitis A virus a/w  Lower 95% CI OR 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
humans estimate
OR estimate © 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Upper 95% CIOR = 483.82 ] o % 3917.62 240.89 998.20
estimate
Astrovirus a/w Lower 95% CIOR  0.41 0.02 0.00 0.01 0.00 0.00 0.27 0.00
humans estimate
OR estimate 1.44 0.88 0.00 o 0.00 0.00 1.68 0.00
Upper 95% CIOR  5.81 7.76 o0 o o0 240.89 7.61 9.77
estimate
Norovirus GI a/w Lower 95% CI OR 0.60 0.24 0.00 0.01 0.00 0.00 0.32 0.00
humans estimate
OR estimate 2.51 2.66 0.00 o 0.00 0.00 2.06 0.00
Upper 95% CI OR 15.10 17.53 o o o 283.74 9.69 11.65
estimate
Norovirus GIIT a/w Lower 95% CI OR 0.76 0.00 0.00 0.00 0.00 0.21 0.12 0.05
bovines estimate
OR estimate 3.85 0.00 0.00 0.00 0.00 o 1.27 2.78
Upper 95% CIOR  38.00 4.93 o o o o 7.07 38.29

estimate
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TABLE 5 (Continued)

MST Marker/Pathogen Coherence in an Intermittent Stream

Value for indicated pathogen(s)

E. coli
MST endpoint Estimate Campylobacter spp. Salmonella spp. O157:H7 Cryptosporidium Giardia  HepatitisE~ Norovirus GII Rotavirus
Norovirus GIV a/w Lower 95% CIOR  0.36 0.00 0.00 0.00 0.00 0.32 0.20 0.00
humans estimate
OR estimate 2.16 0.00 0.00 0.00 0.00 o 2.21 0.00
Upper 95% CIOR ~ 22.89 8.21 e ] % % 14.21 20.95
estimate
Sapovirus a/w Lower 95% CIOR  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
humans estimate
OR estimate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Upper 95% CIOR = o s o e o o o
estimate
Human torque teno Lower 95% CIOR  0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00
virus estimate
OR estimate 2.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Upper 95% CIOR  30.17 6.19 s % % 379.94 2.79 15.99
estimate
Torque teno sus Lower 95% CIOR  0.55 0.03 0.00 0.00 0.00 0.00 0.01 0.00
virus a/w swine estimate
OR estimate 2.97 1.44 0.00 0.00 0.00 0.00 0.67 0.00
Upper 95% CIOR  30.17 13.55 e ] e 379.94 5.54 15.99
estimate
Adenovirus 40/41 Lower 95% CIOR  0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a/w humans estimate
OR estimate 2.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Upper 95% CIOR ~ 113.49 20.95 % % e 998.20 9.77 50.58
estimate
General adenovirus Lower 95% CI OR 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a/w humans estimate
OR estimate 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Upper 95% CIOR ~ 54.79 69.91 e ] e 2002.36 33.77 155.20
estimate
F-RNA coliphage Lower 95% CIOR  0.17 0.00 0.00 0.00 0.00 0.00 0.22 0.00
a/w human origin estimate
OR estimate 1.03 0.00 0.00 0.00 0.00 0.00 2.52 0.00
Upper 95% CIOR  7.27 11.70 52.81 % d 530.43 17.55 23.41
estimate
F-RNA coliphage Lower 95% CIOR 091 0.00 0.00 0.03 0.00 0.04 0.18 0.01
a/w animal origin estimate
OR estimate 2.01 0.00 0.00 0.73 0.00 % 0.72 0.49
Upper 95% CIOR  4.62 1.12 5.57 48.21 11.80 % 2.57 6.41
estimate

“ Significant results are in bold. a/w, associated with.

spring and summer downstream). There were no significant asso-
ciations between Cryptosporidium generalized host classes and
other MST markers.

(vii) Few viruses and coliphages attributable to a particular
source demonstrated significant site-specific affinities. However, a
vast majority of human viruses were shown to increase from the
stream input into the experimental area to sampling sites down-
stream, as per human Bacteroidales marker data.

(viii) Positive associations among the MST markers and patho-
gens were minimal; one exception was that between the ruminant
Bacteroidales marker and Cryptosporidium. This suggests that live-
stock exclusion BMPs could help reduce pathogen exposure risks
(11).

(ix) Overall, discrete sample-by-sample (or sampling window)
coherence among the different MST markers that expressed a sim-
ilar microbial source or source class was minimal. The reasons for
this lack of coherence are, no doubt, multifactorial, but persis-
tence, variable density factors, and the transport disposition of the
various microorganisms would at least seem to be contributing
factors.
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