






Adu145, Tdu177 to Tdu179) revealed a microbiome contrast be-
tween April and May plumes (see Fig. S5 in the supplemental
material).

Figure 3 supports the idea that ALRT plumes delivered similar
microbiota, despite unique transport histories, in April and May:
although species richness levels varied between the events (Tables
1 and 2), the proportion of 15 common bacterial families was
essentially parallel. An important point, however, is that while the
relative abundance remained steady across ALRT plumes, the ab-
solute abundance of 312 OTUs changed significantly (P � 0.001).
To illustrate this observation, a circular tree (see Fig. S6 in the
supplemental material) was constructed to display differentially
abundant OTUs and their taxonomic relationship on the basis of
16S rRNA gene alignment. Welch test P values were used to reduce
the number of significantly different families to 83, and the one
OTU with the greatest abundance difference from each family was
included in the tree. Heat-map values revealed increases within
the class Clostridia and families Sphingomonadaceae, Rhodobacte-
raceae, and Isosphaeraceae relative to the combined means of base-
line samples. Altogether, Proteobacteria (n � 29), Actinobacteria
(n � 19), and Firmicutes (n � 19) totaled 80% of the phyla whose

abundance increased during ALRT plumes. A higher level of Ac-
tinobacteria and Firmicutes is noteworthy because the families in-
clude many spore-forming and Gram-positive species capable of
surviving extreme conditions associated with long-range upper
atmospheric transport. Curiously, 4 out of 5 of the families that
decreased in abundance during plumes were Proteobacteria from
marine environments (including Alteromonadaceae, Vibrion-
aceae, and the OM60 family within the Oceanospirillales).

After establishing that ALRT plumes delivered higher concen-
trations of microbes already present in the North American back-
ground air, we focused on variations within specific taxa using
prediction analysis for microarrays (PAM) (23). Figure 4 high-
lights taxa with possible Asian or oceanic origins, including iso-
lates from a Chinese forest (OTU 51259), Dongping Lake sedi-
ments (OTU 51013), and marine microbial mats (OTU 75349).
The alignment between taxon source regions and probable emis-
sion sites identified by atmospheric data was striking; however,
annotations from the 16S rRNA sequence database can be inaccu-
rate. Source verification of probe-detected taxa would require
sample sequencing (which was outside the scope of our current
study). Another possible agreement between atmospheric trans-

FIG 3 Relative abundance of 15 common bacterial families across the April plume (left) and May plume (right). The size of each color block (assigned to families
in the table below) represents the number of OTUs detected in the family relative to the total number of OTUs detected in that sample. For example, Bacillaceae
OTUs accounted for 6.5% of the total OTUs detected in the first April sample (Abk142). Generally, family proportions remained constant across both episodes.
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port models and microbial biogeography was the detection of
Aeropyrum spp. in the May episode. Finding marine archaea (24)
in the free troposphere above central Oregon also supports micro-
bial ALRT, but biogeography alone cannot be the only means of
inferring distant provenance. Only after considering the location
of our field site, prevailing wind direction, and long-range trans-
port validation through a number of independent atmospheric
data sets [including (i) HYSPLIT, version 4, kinematic back tra-
jectories, (ii) aged aerosol data (i.e., NH4SO4 and soil), (iii) plume
chemical composition (i.e., CO and THg), and (iv) the NAAPS
model] could we be confident about the transoceanic origin of air
samples.

Soon, it may be useful to think about microorganisms as air

pollution (e.g., how aerosols were depicted in Movies S1 and S2 in
the supplemental material, moving in plumes through a global
background layer). Our main finding—that transpacific dust
plumes deliver elevated levels of species already in the background
air—suggests that microbes pool like other types of pollution over
the Pacific Ocean. However, a transpacific monitoring network
with sampling sites in eastern Asia and western North America is
needed to establish an aerobiology data set comparable to that for
the NAAPS model. Such an undertaking would require seasonal
measurements from a variety of natural (desert dust, marine sea
spray, etc.) and artificial (livestock feedlots, wastewater-treatment
facilities, etc.) upwind emission sources (25), monitored, ideally,
through a combination of ground- and aircraft-based platforms.

FIG 4 Significant abundance variations in specific taxa between background (green) and plume (blue) periods. Combined data for April and May events are
shown. HybScores are on the y axis, and the sample order (from left to right) follows the order used in Tables 1 and 2 (e.g., Abk142 is the leftmost data point).
Numbers in parentheses are OTU identification numbers.
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Global sampling efforts using rRNA microarrays might consider
employing the same commercial products to reduce false hybrid-
izations and other sources of variation (17). Standardizing air col-
lection techniques, DNA extraction, PCR amplification, and mi-
croarray protocols would be useful for comparisons between field
sites. Even though microarrays offer improved sensitivity to mi-
crobial taxa (our first investigation of the same ALRT samples
detected only 18 species of bacteria [13]), culture-based aerobiol-
ogy data still have value: understanding what species remain viable
after intercontinental atmospheric transport informs questions
related to disease propagation.

Airborne microorganisms originate from the surface and must
eventually return to it. Consequently, the atmosphere has gener-
ally been considered a conduit for life rather than a true ecosys-
tem. However, our study revealed a microbial richness that rivals
that of surface ecosystems and the presence of many phyla with
adaptations for extended viability during atmospheric transport
(e.g., spore-forming and Gram-positive bacteria). In addition, the
potential for dynamic microbial interactions with the environ-
ment, such as in situ metabolism (26), the stimulation of cloud
formation and precipitation (5), and selection pressures from UV
radiation (27) all support the idea that the atmosphere might be
considered an ecosystem in its own right. No matter how it is
classified, as desertification injects more dust into the atmosphere
(6, 12) and humans grow increasingly vulnerable to changing pat-
terns of weather and disease, it will be important to monitor mi-
crobial populations on intercontinental winds.
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